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• Highest	quality	science

• Most	widely-used
community	models

• Next-generation	instruments,	and	datasets	

Technical	and	Scientific	Advances
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Physics	is	one	of	many	factors

Adapted	from	IPCC	SREX,	2012
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• Incorporate	physics	into	weather	and	climate	risk	
assessment.

• Risk	management	practice	informs	the	physically-based	
approaches.

The	Mother	Lode:	
Capacity	to	understand	mesoscale phenomena
at	the	global	scale.
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Connecting	Physics	and	Resilience
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Stakeholder:	 The	reinsurance	industry

Need:	 Understand	losses

Current	practice:	 Gradient	wind

Hypothesis: Terrain	effects	drive	TC	wind	losses

Physics: Terrain	effects

Results:	 New	view	of	footprints	and	wind	climate

Resilience	action:	 Optimize	reinsurance	portfolios

Thanks	to	Ming	Ge (NCAR),	Yuqing Wang	(U.	Hawaii),	

Geoff	Saville and	Ioana Dima-West	(Willis	Towers	Watson)
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Pathway	1:	TC	Footprinting
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Minimizing	Risk

h
Business/
Societal
Risk

Adapted	from	IPCC	SREX,	2012
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• Understand	inland	wind	decay.

• Understand	historical	losses.

• Quantify	wind	risk	in	regions
of	sparse	data

• Validate	catastrophe	models.
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The	Need	for	Historical	Footprints
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Current	Practice

Parametric	radial	wind	profiles:

- fast,	but	smooth	fields,	surface	wind factors.
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Current	Practice

Parametric	radial	wind	profiles:

- fast,	but	smooth	fields,	surface	wind factors.

Spatial	analysis	of	observations:

- asymmetries,	but	few	storms,	globally	inconsistent.

Numerical	modeling:

- many	physical	processes,	but	slow,	track	error.

Geostatistical spatial	modeling:

- fast,	only	applied	to	European	windstorm	so	far.
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Adding	Physical	Processes

Fast,	some	topographic	and	roughness	effects,	no	track	
error,	but	missing	processes	(e.g.,	strong	thermal	effects).

Kepert and	Wang	(2001)	numerical	
boundary	layer	model.

Historical	track	data	

(EBTrACS and	JTWC)

Holland	et	al.	(2010)	

parametric	pressure	profile		
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Diagnoses	boundary-layer	flow	using	dry	equations	
of	motion	for	a	given	pressure	field.
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The	KW01	Boundary	Layer

• High-order	turbulence	scheme
- prognostic	TKE,	turbulence	dissipation.
- diagnostic	length	scale	(<80m).

• Ignores	strong	thermal	effects.

• Rapidly	achieves	steady	state.
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1. Allow	storms to	move:
- add	environment	pressure	gradient	to	TC	forcing,
- add	storm	translation	velocity	to	horizontal	advection.	
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Modifications	to	KW01
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1. Allow	storms to	move:
- add	environment	pressure	gradient	to	TC	forcing,
- add	storm	translation	velocity	to	horizontal	advection.	

2. Allow	storms	to	change	intensity	and	size:
- update	pressure	gradient	and	allow	winds	to	respond,
- force	gradient	winds	at	model	top.	
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Modifications	to	KW01



MMM	Seminar	– Aug	3,	2017	

1. Allow	storms to	move:
- add	environment	pressure	gradient	to	TC	forcing,
- add	storm	translation	velocity	to	horizontal	advection.	

2. Allow	storms	to	change	intensity	and	size:
- update	pressure	gradient	and	allow	winds	to	respond,
- force	gradient	winds	at	model	top.	

3. Include	some	topographic	effects:
- included	in	model	equations.

4. Include	variable	surface	roughness	effects:	
- drag	coefficient	=	f(terrain	height).			
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Modifications	to	KW01
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Passing	Over	an	Idealized	Hill
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20

Ike	Encounters	a	Surprise	Island

Max	wind	speed	(ms-1)
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Ike	Encounters	a	Surprise	Island

Island	– No	Island

Max	wind	speed	(ms-1) Max	wind	speed	(ms-1)
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Ivan	footprint	similar	to	HWIND

• HWIND	has	greater	asymmetry.	
• HWIND	adjusts	land	data	for	open	terrain.
• KW01	includes	smaller	scales.

H*WIND KW01 KW01	– H*WIND
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Comparison	with	station	data
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• HWIND	and	KW01	have	high	bias.
• KW01	comparable	to	HWIND.
• KW01	has	potential	to	outperform	analyses	in	complex	terrain.
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Results:	250	Footprints
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Results:	High	Terrain

Typhoon	

Longwang (2005)
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Results:	Complex	Topography

Typhoon	Bopha (2012)
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New	views	of	wind	risk	aloft
Typhoon	Ellen	(1983)

Max	wind	at	10m Max	wind	at	~80m

(ms-1)
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• New	view	of	wind	climate
• Optimized	global	exposure	for	business/societal	resilience
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Results:	New	View	of	Wind	Climate
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Pathway	2:	Mitigating	Wind	Loss

Stakeholder: FL	division	of	emergency	management		

Need: Effectiveness	of	the	building	code	

Current	practice:	 Code	based	on	wind	speed

Hypothesis: Losses	also	driven	by	other	wind	effects	

Physics:	 Multiple	wind	field	parameters

Results:	 Quantified	loss	reductions

Resilience	Action:	 Informed	building	code	updates,	policy

Thanks	to	Jeff	Czajkowski (U.	Penn),	Kevin	Simmons	(Austin	College)
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Minimizing	Risk

hResidential
risk

Adapted	from	IPCC	SREX,	2012
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Loss	Data

Ivan
Dennis Frances Jeanne

Charley WilmaKatrina

Ivan
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• Florida	insured	wind	losses

• Source:	Insurance	Services	
Office
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Charley
Frances

Losses	by	hurricane
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Data	source:	NOAA	H*WIND

33

Adding	Physical	Processes

Hurricane	Frances	(2004)
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Loss	increases	with	wind	speed
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Loss	decreases	with	steadiness
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Duration	vs.	Loss
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Duration	important	at	low	speeds
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Ln(losses)	=	f(categorical	wind	factors	+	
exposure	and	vulnerability	factors	+
interaction	effects	+
time	and	space	fixed	effects)	

38

Quantifying	Loss	Reduction
major_hurricane
minor_hurricane
high_duration
high_steadiness

built_2000s	 =	1	if	homes	built	in	the	2000s
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Parameter	 Coefficient	 Significance	
	 Estimate	 Pr	>	|t|	

major_hurricane	 2.49	 <.0001	
minor_hurricane	 1.76	 <.0001	
high_duration	 0.50	 <.0001	
high_steadiness	 -0.78	 <.0001	
built_2000s	 -1.13	 <.0001	

#	obs	 10564	 	
r2	 0.34	 	

	
• Loss	sensitive	to	wind	speed,	then	steadiness,	then	duration.

• Homes	built	to	code	drive	down	losses	by	68%	compared	to	
homes	not	built	to	code.

39

Multiple	wind	parameters	drive	loss

Done	et	al.	(2017)
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Pathway	3:

Understanding	Decision	Climate	Interactions	on	Decadal	Scales

Stakeholders:	 Water	resource	and	flood	control	managers

Need:	 Operations,	modest	infrastructure

Current	practice:	 Daily,	seasonal	forecasts	and	climate	change

Hypothesis:	 Decadal	prediction	is	useful

Physics:	 Remote	controlled	local,	decadal	climate

Results: Intersection	of	need	and	decadal	prediction

Resilience	Action:	 Informed	operations,	medium-term	planning
Thanks	to	the	UDECIDE	team
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Why	Decadal	Prediction?
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NCAR	is	Sponsored	by	
NSF

Why	Decadal	Prediction?
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Minimizing	supply	risk,	and	flood	risk

h
Water	

Supply	and	
Flood	Risks

Adapted	from
IPCC	SREX,	2012
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The	Need:	UDFCD

Peak	flow	and	sustained	high	flow	likelihoods,	for	the
design	and	construction	of	natural	channels.	

Heather	Lazrus
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The	Need:	CA	and	Denver	Water

Number	and	characteristics	of	big	precipitation	events,	for
drought	relief	and	reservoir	management.

Heather	Lazrus
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Can	SSTs	Predict	Precipitation?

Hewitt	et	al.	(2017)
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Correlations:	SST	and	Precipitation	

Casey	Shafer,	Josh	Hewitt,	Jennifer	Hoeting (CSU)

Model	with	remote
effects	only.

Model	with	remote
+	local	effects
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Hagos et	al	(2015)

Atmospheric	River,
MPAS

Planned	MPAS	Experiment
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Decadal	Remote	Controls	on	ARs

Henley	et	al	(2015)

Positive	Phase	PDO

Negative	Phase	PDO

AR	characteristics:
• timeseries analysis
• rain/snow	ratio,	freezing	level.
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• Physical	science	informed	by	needs
• Compatible	with	management	practice
• Two-way
• A	key	component	of	a	broader	effort.

Significant	advances	expected	through	understanding	
mesoscale phenomena	at	global	scales.

Collaborate	through

50

Attributes	of	Successful	Pathways

NCAR	is	sponsored	by	the	National	Science	Foundation


