

3WE

James Done

Increasing Number of Events

MMM Seminar – Aug 3, 2017

NCAR

Increasing Losses

Munich Re 2014

NCAR

Technical and Scientific Advances

• Highest quality science

Rank	Institution	C/N = citations per paper	N = number of papers	C = number of citations
1	NCAR (NATL CTR ATMOSPHERIC RES)	34.92	4,718	164,732
2	HARVARD UNIV	29.81	1,908	56,878
3	PRINCETON UNIV	28.13	1,701	47,857
4	UNIV WASHINGTON	25.16	3,967	99,813
5	UNIV COLORADO BOULDER	25.04	5,233	131,049

• Most widely-used community models

Next-generation instruments, and datasets

Physics is one of many factors

Adapted from IPCC SREX, 2012

Connecting Physics and Resilience NCCAR

- Incorporate physics into weather and climate risk assessment.
- Risk management practice informs the physically-based approaches.

The Mother Lode: Capacity to understand mesoscale phenomena at the global scale.

Pathway 1: TC Footprinting

- **Stakeholder:** The reinsurance industry
- Need: Understand losses
- **Current practice:** Gradient wind
- **Hypothesis:** Terrain effects drive TC wind losses
- **Physics:** Terrain effects
- **Results:** New view of footprints and wind climate
- **Resilience action:** Optimize reinsurance portfolios

Thanks to Ming Ge (NCAR), Yuqing Wang (U. Hawaii),

Geoff Saville and Ioana Dima-West (Willis Towers Watson)

Minimizing Risk

Adapted from IPCC SREX, 2012

The Need for Historical Footprints

- Understand inland wind decay.
- Understand historical losses.
- Quantify wind risk in regions of sparse data
- Validate catastrophe models.

NCAR

NATIONAL CENTER FOR ATMOSPHERIC RESEARCH

Parametric radial wind profiles:

- fast, but smooth fields, surface wind factors.

Current Practice

Parametric radial wind profiles:

- fast, but smooth fields, surface wind factors.

Spatial analysis of observations:

- asymmetries, but few storms, globally inconsistent.

Current Practice

Parametric radial wind profiles:

- fast, but smooth fields, surface wind factors.

Spatial analysis of observations:

- asymmetries, but few storms, globally inconsistent.

Geostatistical spatial modeling:

- fast, only applied to European windstorm so far.

Current Practice

Parametric radial wind profiles:

- fast, but smooth fields, surface wind factors.
- Spatial analysis of observations:
- asymmetries, but few storms, globally inconsistent.
- **Geostatistical spatial modeling:**
- fast, only applied to European windstorm so far.

Numerical modeling:

- many physical processes, but slow, track error.

Adding Physical Processes

Fast, some topographic and roughness effects, no track error, but missing processes (e.g., strong thermal effects).

The KW01 Boundary Layer

Diagnoses boundary-layer flow using dry equations of motion for a given pressure field.

- High-order turbulence scheme
 - prognostic TKE, turbulence dissipation.
 - diagnostic length scale (<80m).
- Ignores strong thermal effects.
- Rapidly achieves steady state.

Modifications to KW01

- 1. Allow storms to move:
 - add environment pressure gradient to TC forcing,
 - add storm translation velocity to horizontal advection.

Modifications to KW01

- 1. Allow storms to move:
 - add environment pressure gradient to TC forcing,
 - add storm translation velocity to horizontal advection.
- 2. Allow storms to change intensity and size:
 - update pressure gradient and allow winds to respond,
 - force gradient winds at model top.

Modifications to KW01

- 1. Allow storms to move:
 - add environment pressure gradient to TC forcing,
 - add storm translation velocity to horizontal advection.
- 2. Allow storms to change intensity and size:
 - update pressure gradient and allow winds to respond,
 - force gradient winds at model top.
- 3. Include some topographic effects:
 - included in model equations.
- 4. Include variable surface roughness effects:
 - drag coefficient = f(terrain height).

Ike Encounters a Surprise Island

NCAR

Ike Encounters a Surprise Island

NCAR

Ivan footprint similar to HWIND

- HWIND has greater asymmetry.
- HWIND adjusts land data for open terrain.
- KW01 includes smaller scales.

Comparison with station data

- HWIND and KW01 have high bias.
- KW01 comparable to HWIND.
- KW01 has potential to outperform analyses in complex terrain.

Results: 250 Footprints

Results: High Terrain

Results: Complex Topography

10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78

Typhoon Bopha (2012) 🕅

NCAR

New views of wind risk aloft

NCAR

Results: New View of Wind Climate

NATIONAL CENTER FOR ATMOSPHERIC RESEARCH

INCAR

- New view of wind climate
- Optimized global exposure for business/societal resilience

Pathway 2: Mitigating Wind Loss

- DSS NCAR NATIONAL CENTER FOR ATMOSPHERIC RESEAR
- **Stakeholder:** FL division of emergency management
- **Need:** Effectiveness of the building code
- **Current practice:** Code based on wind speed
- **Hypothesis:** Losses also driven by other wind effects
- **Physics:** Multiple wind field parameters
- **Results:** Quantified loss reductions

Resilience Action: Informed building code updates, policy

Thanks to Jeff Czajkowski (U. Penn), Kevin Simmons (Austin College)

Minimizing Risk

Adapted from IPCC SREX, 2012

Loss Data

AR

NCAR Losses by hurricane Charley (log(loss_ratio)) <u>~</u>``` Frances -4 -6 -8 -10 -12 dice Alines

Adding Physical Processes

Hurricane Frances (2004)

Data source: NOAA H*WIND

NCAR

Loss increases with wind speed

R

NATIONAL

Loss decreases with steadiness

MMM Seminar – Aug 3, 2017

R

Duration vs. Loss

Duration important at low speeds

R

Quantifying Loss Reduction

major_hurricane minor_hurricane high_duration high_steadiness

Ln(losses) = f(categorical wind factors + exposure and vulnerability factors + interaction effects + time and space fixed effects)

built_2000s = 1 if homes built in the 2000s

Multiple wind parameters drive loss

Parameter	Coefficient	Significance	
	Estimate	Pr > t	
major_hurricane	2.49	<.0001	
minor_hurricane	1.76	<.0001	
high_duration	0.50	<.0001	
high_steadiness	-0.78	<.0001	
built_2000s	-1.13	<.0001	
# obs	10564		
r	0.34		

- Loss sensitive to wind speed, then steadiness, then duration.
- Homes built to code drive down losses by 68% compared to homes not built to code.

Done et al. (2017)

Understanding Decision Climate Interactions on Decadal Scales

Stakeholders: Water resource and flood control managers Need: **Operations**, modest infrastructure **Current practice:** Daily, seasonal forecasts and climate change **Hypothesis:** Decadal prediction is useful **Physics:** Remote controlled local, decadal climate **Results:** Intersection of need and decadal prediction **Resilience Action:** Informed operations, medium-term planning Thanks to the UDECIDE team

Why Decadal Prediction?

CAR

NATIONAL CENTER

Why Decadal Prediction?

SONOMA ^{C O U N T Y} WATER

GEN

DENVER WATER

NATIONAL CENTER

Minimizing supply risk, and flood risk

Vulnerability Water Weather and Supply and Climate **Flood Risks Events** Exposure

Adapted from IPCC SREX, 2012

NCAR

NATIONAL CENTER FOR ATMOS

The Need: UDFCD

Peak flow and sustained high flow likelihoods, for the design and construction of natural channels.

Heather Lazrus

CAR

Number and characteristics of big precipitation events, for drought relief and reservoir management.

Heather Lazrus

Can SSTs Predict Precipitation?

⁶⁰N · SSTK (K) x(s,t), Y(s,t)2 40N Latitude z(r,t) Precip. (mm) 20S 150W 100W 160E Longitude *Hewitt et al. (2017)*

Correlations: SST and Precipitation

Model with remote effects only.

Model with remote + local effects

Casey Shafer, Josh Hewitt, Jennifer Hoeting (CSU)

AR

Planned MPAS Experiment

MPAS

Decadal Remote Controls on ARs

Negative Phase PDO

AR characteristics:

- timeseries analysis
- rain/snow ratio, freezing level.

NCAR

Attributes of Successful Pathways

- Physical science informed by needs
- Compatible with management practice
- Two-way
- A key component of a broader effort.

Collaborate through

NCAR is sponsored by the National Science Foundation