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Overview
We begin to develop a regional geostatistical model to
study teleconnections—a climate phenomenon in which
geographically distant areas influence regional climate
patterns—at decadal time scales. Such a model could
ultimately help regional planners use climate forecasts
to study and prepare for local impacts of climate change.
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Teleconnections occur when remote covariates, like Pacific Ocean sea surface temperatures,
influence regional climate variables, like average Spring precipitation in Oklahoma.

Model
We modify the spatially-varying intercept model to model teleconnection with

Yt︸︷︷︸
Local response

= Xtβ︸︷︷︸
Local effects

+
(
zTt α

)
1ns︸ ︷︷ ︸

Teleconnection effects

+ ωt︸︷︷︸
Local spatial noise

where Yt =
(
ys1,t, . . . , ysns ,t

)T and for timepoints t ∈ T = {t1, . . . , tnt
} and

Data
Yt ∈ Rns

Xt ∈ Rns×p

zt ∈ Rnr

Spatial effects

α ∼ N
(
0nr×1, σ

2
yσ

2
αR(λr)

)
ωt

iid∼ N
(
0ns

, σ2
y

(
H(λl) + σ2

εIns

))
Parameters

β ∼ N (0p×1, Λ)
σ2 ∼ Inv-Gamma(k, θ)
λ ∼ Uniform(a, b)

Key observations/notes:

1. We model teleconnection effects as a random intercept controlled by coefficients, α, that vary spatially
over remote covariates, zt.
Assumptions: time-constant assumption justified by climate system stability within decadal scales;
local space-constant assumption justified by only applying model to regional data, within which effects
are assumed constant.

2. Time independence of {ωt} justified by lack of large temporal trends, but could be modeled with
standard spatio-temporal techniques.

3. Bounded spatial range parameters, λ, and nugget effect, σ2
ε , ensure the model’s numerical stability.

4. Scale parameters, σ2, are parameterized for identifiability and decreased correlation during estimation.

Results
Posterior mean of α|Y when fixing σ2

y = 10, 000
and placing an informative prior on β.
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Posterior mean of teleconnection coefficients.

Compared to pointwise correlation maps, estimated
teleconnection coefficients may yield results more
consistent with known El-Niño effects, in which tropical
sea surface temperatures tend to be positively correlated
with spring Oklahoma precipitation.

Posterior mean 95% HPD Interval

β0 119 (98.3, 146)
β1 -2.86 (-3.19, -2.52)
λl 7.6 (7.42, 7.74)
λr 1.9 (0.134, 4.17)
σ2
α 0.311 (0.121, 0.537)
σ2
ε 0.00424 (0.00415, 0.00432)

Posterior parameter estimates generally appear
consistent with exploratory analysis.

Exploratory analysis
Data: (1981-2013) Average Oklahoma and sea surface temperatures in spring from ERA-Interim

Reanalysis data; PRISM precipitation (total rain and melted snow).

Time series plots of response variable over Oklahoma show no consistent, large temporal
dependence. The time series for each spatial location is plotted in a different color.
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Temperature is approximately linearly related to precipitation at each location in Oklahoma. Spatial
locations are plotted in different colors and the linear relationship at each location is overlaid.
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Correlation

Pointwise correlations of sea surface temp. with average Oklahoma spring precipitation.

This correlation map plots the correlation between the overall average spring precipitation in
Oklahoma with sea surface temperature (SST) at remote locations in the Pacific Ocean. The
correlation map suggests clear, but weak teleconnection effects.

Parameter estimation
• Estimate parameters with hybrid Gibbs algorithm

applied to the model marginalized over spatial effects.

– Adaptive random walk updates computed for:
• β, log(σ2), logit(λ)

• Estimate teleconnection coefficients, α, by using
posterior parameter samples to draw (in parallel)
composition samples of α.

• Marginal likelihood complexity:

– Likelihood evaluation in O(n3
s ∨ n3

r) by
applying Kronecker product properties and
Sherman-Morrison-Woodbury formula.

Marginal model:
(
let Σy = σ2

y

(
H(λl) + σ2

εIns

)
and Rα = σ2

yσ
2
αR(λr)

)

Y =

 Yt1...
Ytnt

 ∼ N


Xt1

. . .
Xtnt


β...
β

 ,
Σy

. . .
Σy

+

 (zTt1Rαzt1)Jns · · · (zTt1Rαztnt
)Jns

...
(zTtnt

Rαzt1)Jns · · · (zTtnt
Rαztnt

)Jns




Composition-sample distribution:
(
let RT = R−1α +

(
1Tns

Σ−1y 1ns

) (∑
t∈T ztz

T
t

))
α|Y ∼ N

(∑
t∈T

(
1Tns

Σ−1y (Yt −Xtβ)
)
R−1T zt, R

−1
T

)

Future work
• If our preliminary results are validated, our

flexible model may produce more informative
and reliable inferences than classical tools for
studying teleconnections, such as correlation
maps.

• Improve estimation for σ2
y.

• Allow α to vary locally as well as remotely.
Challenge is to efficiently composition sample
ns × nr teleconnection coefficients.
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