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Results

We begin to develop a regional geostatistical model to We modify the spatially-varying intercept model to model teleconnection with Posterior mean of a|Y when fixing o, = 10, 000
study teleconnections—a climate phenomenon in which and placing an informative prior on 3.
geographically distant areas influence regional climate Y, = X8 + ( z?a) 1, i W

patterns—at decadal time scales. Such a model could —~— —~— ———— ~—~— Posterior mean of teleconnection coefficients

Y
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ultimately help regional planners use climate forecasts ocal response  Local effects  Teleconnection effects ocal spatial noise

to study and prepare for local impacts of climate change.

where Y, = (ysl,t, ey Y t)T and for timepoints t € T = {t1,...,t,, } and
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e Key observations /notes: Compared to pointwise correlation maps, estimated
260 LW el tel . o i . led b o " - teleconnection coeflicients may yield results more

. m nnection random 1nter ntr lents, o r 1 : : : . ~ : : :
N o e model teleco . ection etfects as a rando tercept controlled by coeiicients, o, that vary spatially consistent with known El-Nifio effects, in which tropical
rongiude DUSE NEITONE COVBITIRNES, e« sea surface temperatures tend to be positively correlated
Teleconnections occur when remote covariates, like Pacific Ocean sea surface temperatures, . . 43 . . . . 13 . . . . . . . .
influence regional climate variables, like average Spring precipitation in Oklahoma. Assumptlons. time-constant assumptlon JUStlﬁed by climate system Stablhty within decadal Scales, Wlth Spring Oklahoma prec1p1tat10n.

local space-constant assumption justified by only applying model to regional data, within which effects
are assumed constant.

Posterior mean 95% HPD Interval

2. Time independence of {w:} justified by lack of large temporal trends, but could be modeled with By 119 (98.3, 146)
Dt (19512013 forag O s e enpetyes s fom ERA e standard spatio-temporal techniques. B 2.8 (-3.19, -2.52)
o | | - 2 : : s N 7.6 (7.42, 7.74)
Time series plots of response variable over Oklahoma show no consistent, large temporal 3. Bounded spatial range parameters, A\, and nugget effect, o7, ensure the model’s numerical stability.
dependence. The time series for each spatial location is plotted in a different color. >\r 19 (0134, 417)
4. Scale parameters, o, are parameterized for identifiability and decreased correlation during estimation. o 0.311 (0.121, 0.537)

3 oz 0.00424 (0.00415, 0.00432)
§; Parameter estimation Posterior parameter estimates generally appear
£ consistent with exploratory analysis.

e Listimate parameters with hybrid Gibbs algorithm | e Marginal likelihood complexity:

. . ; - uture wor
. | | . . | — Adaptive random walk updates computed for: applying  Kronecker product properties and
Temperature is approximately linearly related to precipitation at each location in Oklahoma. Spatial

locations are plotted in different colors and the linear relationship at each location is overlaid. ° /87 lOg(O'Q), lOglt(A) Sherman—Morrison—Woodbury formula. o [f our preliminary results are Validated, our

flexible model may produce more informative
and reliable inferences than classical tools for

e Listimate teleconnection coeflicients, «, by using
posterior parameter samples to draw (in parallel)

gzoo- composition samples of c. studying teleconnections, such as correlation
S maps.
S . SN 2
g™ Marginal model: (let ¥, = o7 (H(\;) + 021,,,) and R, = 0202R(\,)) e Improve estimation for .
ERORRS Dy oESTS — == o Allow o to vary locally as well as remotely.
0_2%5 _ . 285 = s - - Y, X, 118 D . " ( zg; Roze, ) Jn. -+ ( Zz; Rozt,, )T, Challenge is to efficiently composition sample
Average Spring Temperature (K) , , , ns X n, teleconnection coefficients.
Y = . e N K . ) K + :
Pointwise correlations of sea-surfac?e temp. with average Oklahi)\ma spring precipitation. thnt tht /B Ey (zz;t Raztl )Jns o o o (zz;t Raztnt )Jns
e - ' T R ‘ References
20- —— Composition-sample distribution: (let Ry = R-1 + 17 v-1q1 S 22T Banerjee, S., Carlin, B.P., and Gelfand, A.E., 2004,
e o ( - ( meTy T ) (ZteT ' )) Hierarchical Modeling and Analysis for Spatial Data:
: _ or Boca Raton, FL,, Chapman and Hall/CRC.
.. oY ~N Z (13;8 Zy_l (Y — Xt,B)) R;lzt, R;l Givens, G.H., and Hoeting, J., 2013, Computational
teT Statistics: Hoboken, NJ, John Wiley & Sons, Inc.
Towler, E., Pai Mazumder, D., and Holland, G. A

150 ~120

Longitude framework for investigating large-scale patterns as an
This correlation map plots the correlation between the overall average spring precipitation in ACkﬂOWledgemeﬂtS alternative to precipitation fOI‘ downscaling to local
Oklahoma with sea surface temperature (SST) at remote locations in the Pacific Ocean. The
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