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Magnetic turbulence in nature 

Solar wind ISM 

[Armstrong, Rickett, Spangler (1995)] [Goldstein, Roberts, Matthaeus (1995)] 

energy spectra 



Kolmogorov turbulence 
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𝜕𝑣

𝜕𝑡
+ 𝑣 ⋅ 𝛻 𝑣 = −𝛻𝑝 + 𝜈𝛻2𝑣 + 𝑓  

dissipation 

𝑘  

𝐸(𝑘) 

𝑘0 

Inertial interval 

𝐸 𝑘 ∝ 𝑘−5/3 

𝑘𝜈 

𝐸 𝑘 = 𝐶𝑘𝜖2/3𝑘−5/3𝑓(𝑘𝜂)  

𝑓 0 = 1 

𝜂 = 𝜈3/4𝜖−1/4 

L V0 

𝑅𝑒 =
𝑣0𝐿

𝜈 
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L v 

HD turbulence: 

interaction of eddies 

MHD turbulence: 

interaction of wave packets 

moving with Alfven velocities 

B0 

V 

V A 

A 

MHD turbulence vs Hydrodynamic 

turbuence 
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Guide field in MHD turbulence 

B0 

V 

V A 

A 

B0 imposed by  

external sources 

B0 

B0 created by  

large-scale eddies 



Spectrum of MHD turbulence 
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B0 

V 

V A 

A 

dissipation 

𝑘  

𝐸(𝑘) 

𝑘0 

Inertial interval 

𝐸 𝑘 ∝ 𝑘−𝛼 

𝑘𝜈 

𝐸 𝑘⊥ = 𝐶𝑘
𝑀𝜖2/3𝑘⊥

−5/3
𝑔(𝑘⊥𝜂, 𝑘⊥Λ) 

Dimensional arguments do not work  

– new dimensional parameter  𝑣𝐴  

Need to study nonlinear interaction 

in detail in order to find the dependence  

on 𝑘Λ  (Λ is the outer scale). 

𝑔 0, 𝑘Λ ∼ (𝑘Λ)−1/3, 𝐸 𝑘 ∝ 𝑘⊥
−2 

𝑔 0, 𝑘Λ ∼ (𝑘Λ)+1/6, 𝐸 𝑘 ∝ 𝑘⊥
−3/2

 

weak turbulence: 

strong turbulence: 
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Magnetohydrodynamic (MHD)  equations 

Separate the uniform magnetic field:  

Introduce the Elsasser variables: 

Then the equations take a symmetric form: 

With the Alfven velocity 

The uniform magnetic field mediates small-scale turbulence 
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MHD turbulence: Alfvenic cascade 

         E+ ~ E- : balanced case.                   E+ À E- : imbalanced case 

Z+ 
Z- 

Z- Z+ 

Ideal system conserves the Elsasser energies 
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Anisotropy of MHD turbulence  

Polarization of shear Alfven and pseudo Alfven waves 

Shear Alfven Pseudo Alfven 

Cascade is dominated by shear Alfven modes, e.g., 

(𝑧𝑠
±⋅ 𝛻)𝑧𝑝

∓ ≫ (𝑧𝑝
±⋅ 𝛻)𝑧𝑠

∓ 



Strength of interaction in MHD turbulence 
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(kkvA)z
§ (k?z¨)z§

When                                        turbulence is weak 

 

When                                      turbulence is strong   

 

kkvA À k?z¨

kkvA » k?z¨
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MHD turbulence: collision of Alfven waves 



MHD turbulence: collision of Alfven waves 
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Strong MHD turbulence: collision of eddies 
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Strong MHD turbulence: collision of eddies 
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Goldreich-Sridhar spectrum of strong turbulence 
Anisotropy of “eddies” 

Critical Balance 

[Goldreich & Sridhar 1995] 

B 

Energy spectrum: 

𝜆/Λ 2/3 ∼ 𝑙/Λ 

Anisotropy: 

should not be broken in 

numerical simulations! 

𝐸 𝑘⊥ = 𝐶𝜖2/3𝑘⊥
−5/3

 

no ¤ in the spectrum 
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Critical balance, anisotropy 

B 

Correlation time of fluctuations, or 

eddy turnover time 

Causality GS Critical balance 

critical balance of strong turbulence  

     is a consequence of causality 
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Critical balance, anisotropy 

B 

𝑙 

Numerical scheme should  

correctly reproduce progressively 

increasing anisotropy of eddies  

at small scales 



Spectrum of strong MHD turbulence in DNS: 

balanced case 
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Perez et al,  Phys Rev  X (2012)  

                     Computational resources: DoE 2010 INCITE,  

Machine: Intrepid, IBM BG/P at Argonne Leadership Computing Facility  

up to 20483 



Spectrum of strong MHD turbulence in DNS: 

imbalanced case 
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Re = 2200, 5600, 14000 

                     Computational resources: DoE 2010 INCITE,  

Machine: Intrepid, IBM BG/P at Argonne Leadership Computing Facility  

Perez et al,  Phys Rev X (2012)  
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Possible explanation of the -3/2 spectrum 

Fluctuations           and           become spontaneously aligned  

in the field-perpendicular plane within angle  

G
ra

d
ie

n
t 

Nonlinear interaction is depleted 

Dynamic Alignment theory 

v b 

B0 

SB (2005, 2006) 
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Numerical verification of dynamic alignment 

Alignment angle: 

Magnetic and velocity  

fluctuations become progressively  

stronger aligned at smaller scales. 

Form sheet-like structures 

Mason et al 2011,  Perez et al 2012 

s 
s 

s 

𝜃𝑙 = 𝑙/Λ 1/4𝜃0 

𝐸 𝑘⊥ = 𝐶𝑘
𝑀𝜖2/3𝑘⊥

−5/3
k⊥Λ 1/6 

𝑙/Λ ∼ 𝜆/Λ 1/2 

𝜃𝑙 
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Physics of the dynamic alignment 

Hydrodynamics: 

MHD: 

Energy E is dissipated faster than cross-helicity HC 



Angular alignment between b¸ and v¸  

role of resolution  
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20483 

20482 × 512  

5123 

10243 

20483 

Alignment is preserved in well resolved  

simulations at all scales, down to  

discretization scale  

Alignment is broken in under-resolved 

simulations  

Dissipation 

Inertial 

interval 

Modeling of small scales should preserve the alignment 
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Scale-Dependent Dynamic Alignment 

3D anisotropic eddies 

2/1~ l

       Dynamic alignment: 

4/3~ line displacement: 

3/2~ l

Goldreich-Sridhar 1995 “eddy”: 

~line displacement: 

As the scale decreases,  

               λ→0,  

turns into filament 

turns into current sheet 

agrees with numerics! 



How strong B0 is “strong” ? 
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/𝑏𝑟𝑚𝑠 

Large-scale magnetic  

field becomes essential  

when B0/b > 3. 

Mason et al 2006 



Dynamic alignment and 3D anisotropy 
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Numerical scheme should correctly  

reproduce progressively increasing  

alignment and 3D anisotropy of  

small scale eddies. 



Magnetic and kinetic spectra in the solar 

wind 
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Podesta et al (2007) 

frequency frequency 



Energy spectra in the solar wind and in 

numerical simulations 
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Numerical simulations: 

spectral indices in 80  

independent snapshots,  

separated by a turnover  

time.  

Solar wind observations: 

spectral indices in  

15,472 independent  

measurements.  

(From 1998 to 2008,  
fit from 1.8 £ 10-4 to 

3.9 £ 10-3 Hz) 

S.B., J. Perez, J Borovsky &  

J. Podesta (2011) 

Ev EB 
Etot 



Residual energy in MHD turbulence 
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hz+(k) ¢ z¡(k0)i = qr(kk; k?)±(k+k0) 6= 0

hz+ ¢ z¡i = hv2 ¡ b2i

-- need 3 correlation functions to describe two fields 

 

-- residual energy plays important role in MHD dynamics. 

    e.g., the spectrum of weak MHD turbulence cannot be derived  

    correctly without residual energy 

residual energy 



Residual energy in MHD turbulence 
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hz+(k) ¢ z¡(k0)i = qr(kk; k?)±(k+k0)

hz+ ¢ z¡i = hv2 ¡ b2i residual energy 

Numerical simulations should  

correctly reproduce small-scale residual energy 



energy  

supply 

weak MHD  

turbulence strong MHD  

turbulence 
Etot(k?) / k?

-2 

E(k?) / k?
-3/2 

Residual energy 

Er(k?)=EB–EV / k?
-1 

Here Er ~ Etot ! 

 Also, turbulence  

becomes strong! 

Wang et al 2011 

K? 

Unifying picture of MHD turbulence 



Unifying picture of MHD turbulence 

energy  

supply 

weak MHD  

turbulence 

strong MHD  

turbulence 

Etot(k?) / k?
-2 Etot(k?) / k?

-3/2 

Residual energy 

Er(k?)=EB–EV / k?
-1 

Residual energy 

Er(k?)=EB–EV / k?
-2 

1 

𝐸𝑟

𝐸𝑡𝑜𝑡
~𝑘 

Wang et al 2011 

 Muller & Grappin 2005 

SB, Perez & Wang 2012 

𝐸𝑟

𝐸𝑡𝑜𝑡
~𝑘−1/2 



Conclusions 

• Numerical schemes should correctly capture the essential properties 

of MHD turbulence at small scales: 

 

•
𝛿𝑏

𝐵0
≤ 1/3, otherwise turbulence is close to Kolmogorov; 

 

• Scale dependent anisotropy of small-scale fluctuations with respect 

to the local magnetic field; 

 

•  Scale dependent correlation (alignment) of v and b fluctuations; 

 

• residual energy. 
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