Magnetohydrodynamic Turbulence: challenges for numerical simulations

Stanislav Boldyrev (UW-Madison)

Thanks to: Fausto Cattaneo (U. Chicago), Jean Carlos Perez (U. New Hampshire), Joanne Mason (U. Exeter, UK), Vladimir Zhdankin (UW-Madison), Konstantinos Horaites (UW-Madison), Qian Xia (UW-Madison),

Two reviews: Tobias, et al in ``Ten Chapters on Turbulence" (2013); Perez, et al PRX 2 (2012) 041005

Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas Boulder, May 20, 2013

Magnetic turbulence in nature energy spectra

[Goldstein, Roberts, Matthaeus (1995)] [Armstrong, Rickett, Spangler (1995)]

Kolmogorov turbulence

$$\frac{\partial v}{\partial t} + (v \cdot \nabla)v = -\nabla p + v\nabla^2 v + f$$
$$Re = \frac{v_0 L}{v} \gg 1$$

$$E(k) = C_k \epsilon^{2/3} k^{-5/3} f(k\eta)$$
$$f(0) = 1$$
$$\eta = \nu^{3/4} \epsilon^{-1/4}$$

MHD turbulence vs Hydrodynamic turbuence

HD turbulence: interaction of eddies

MHD turbulence: interaction of wave packets moving with Alfven velocities

Guide field in MHD turbulence

B₀ imposed by external sources

B₀ created by large-scale eddies

Spectrum of MHD turbulence

E(k)Energy _{Cascade} $E(k) \propto k^{-\alpha}$ dissipation Inertial interval k_0 k_{ν} k weak turbulence: $g(0,k\Lambda) \sim (k\Lambda)^{-1/3}, \quad E(k) \propto k_{\perp}^{-2}$ strong turbulence: $g(0,k\Lambda) \sim (k\Lambda)^{+1/6}, \quad E(k) \propto k_{\perp}^{-3/2}$

Dimensional arguments do not work - new dimensional parameter v_A

$$E(k_{\perp}) = C_k^M \epsilon^{2/3} k_{\perp}^{-5/3} g(k_{\perp} \eta, k_{\perp} \Lambda) -$$

Need to study nonlinear interaction in detail in order to find the dependence on $k\Lambda$ (Λ is the outer scale).

Magnetohydrodynamic (MHD) equations

$$\partial_t \mathbf{v} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\frac{1}{\rho_0} \nabla p + \frac{1}{4\pi\rho_0} (\mathbf{B} \cdot \nabla) \mathbf{B} + \nu \nabla^2 \mathbf{v}$$
$$\partial_t \mathbf{B} = \nabla \times [\mathbf{v} \times \mathbf{B}] + \eta \nabla^2 \mathbf{B}$$

Separate the uniform magnetic field: $\mathbf{B} = \mathbf{B}_0 + \mathbf{b}$

Introduce the Elsasser variables:

$$\mathbf{z}^{\pm} = \mathbf{v} \pm \frac{1}{\sqrt{4\pi\rho_0}} \mathbf{b}$$

Then the equations take a symmetric form:

$$\partial_t \mathbf{z}^+ - (\mathbf{v}_A \cdot \nabla) \mathbf{z}^+ + (\mathbf{z}^- \cdot \nabla) \mathbf{z}^+ = -\nabla P$$

$$\partial_t \mathbf{z}^- + (\mathbf{v}_A \cdot \nabla) \mathbf{z}^- + (\mathbf{z}^+ \cdot \nabla) \mathbf{z}^- = -\nabla P$$

With the Alfven velocity $\mathbf{v}_A = \mathbf{B}_0 / \sqrt{4\pi\rho_0}$

The uniform magnetic field mediates small-scale turbulence

MHD turbulence: Alfvenic cascade $\partial \mathbf{z}^{\pm} \mp (\mathbf{v}_A \cdot \nabla) \mathbf{z}^{\pm} + (\mathbf{z}^{\mp} \cdot \nabla) \mathbf{z}^{\pm} = -\nabla P + \frac{1}{R_e} \nabla^2 \mathbf{z}^{\pm} + \mathbf{f}^{\pm}$ Ideal system conserves the Elsasser energies $= \frac{E - 2 J \mathbf{v}}{H^C} = \int (\mathbf{v} \cdot \mathbf{b}) d^3 x$ $E = \frac{1}{2} \int (v^2 + b^2) d^3x$ $E^+ = \int (\mathbf{z}^+)^2 d^3 x$ $E^- = \int (\mathbf{z}^-)^2 \, d^3 x$ Z+ \mathbf{B}_0 V_A V_A \mathbf{B}_0 \mathbf{V}_A V_{A} $E^+ \sim E^-$: balanced case. $E^+ \gg E^-$: imbalanced case

$$H^{C} = \int (\mathbf{v} \cdot \mathbf{b}) d^{3}x = \frac{1}{4} (E^{+} - E^{-}) \neq 0$$
 8

Anisotropy of MHD turbulence

Polarization of shear Alfven and pseudo Alfven waves

Cascade is dominated by shear Alfven modes, e.g.,

 $(z_s^{\pm} \cdot \nabla) z_p^{\mp} \gg (z_p^{\pm} \cdot \nabla) z_s^{\mp}$

Strength of interaction in MHD turbulence

$$\partial \mathbf{z}^{\pm} \mp (\mathbf{v}_{A} \cdot \nabla) \mathbf{z}^{\pm} + (\mathbf{z}^{\mp} \cdot \nabla) \mathbf{z}^{\pm} = -\nabla P + \frac{1}{Re} \nabla^{2} \mathbf{z}^{\pm} + \mathbf{f}^{\pm}$$

$$\overbrace{(k_{\parallel} v_{A}) z^{\pm}}^{\mathbf{(k_{\perp} z^{\mp}) z^{\pm}}} (k_{\perp} z^{\mp}) z^{\pm}$$

When
$$~~k_\parallel v_A \gg k_\perp z^\mp~$$
 turbulence is weak

When $~~k_\parallel v_A \sim k_\perp z^\mp$ turbulence is strong

MHD turbulence: collision of Alfven waves

user: jcperez Sun Feb 28 21:29:59 2010

MHD turbulence: collision of Alfven waves

user: jcperez Sun Feb 28 21:29:59 2010

Strong MHD turbulence: collision of eddies

Strong MHD turbulence: collision of eddies

Goldreich-Sridhar spectrum of strong turbulence Anisotropy of "eddies"

Energy spectrum:

 $E(k_{\perp}) = C\epsilon^{2/3}k_{\perp}^{-5/3}$

no Λ in the spectrum

[Goldreich & Sridhar 1995]

 $\partial_t \mathbf{z}^+ - (\mathbf{v}_A \cdot \nabla) \mathbf{z}^+ + (\mathbf{z}^- \cdot \nabla) \mathbf{z}^+ = -\nabla P$ $\partial_t \mathbf{z}^- + (\mathbf{v}_A \cdot \nabla) \mathbf{z}^- + (\mathbf{z}^+ \cdot \nabla) \mathbf{z}^- = -\nabla P$ \bigvee $V_A/l \sim \delta b_\lambda/\lambda$

Critical Balance

Anisotropy:

$$(\lambda/\Lambda)^{2/3} \sim l/\Lambda$$

should not be broken in numerical simulations!

Critical balance, anisotropy

Spectrum of strong MHD turbulence in DNS: balanced case

Computational resources: DoE 2010 INCITE, Machine: Intrepid, IBM BG/P at Argonne Leadership Computing Facility

Perez et al, Phys Rev X (2012)

Spectrum of strong MHD turbulence in DNS: imbalanced case

Perez et al, Phys Rev X (2012)

Possible explanation of the -3/2 spectrum Dynamic Alignment theory

Fluctuations δv_{λ} and δb_{λ} become spontaneously aligned in the field-perpendicular plane within angle θ_{λ}

SB (2005, 2006)

Numerical verification of dynamic alignment

 $S_{cross}(r) = \langle |\delta \tilde{\mathbf{v}}_r \times \delta \tilde{\mathbf{b}}_r| \rangle \qquad S_2(r) = \langle |\delta \tilde{\mathbf{v}}_r| |\delta \tilde{\mathbf{b}}_r| \rangle$

Alignment angle: $\theta_r \approx \sin(\theta_r) \equiv S_{cross}(r)/S_2(r)$

Magnetic and velocity fluctuations become progressively stronger aligned at smaller scales. Form sheet-like structures

$$\begin{aligned} \theta_l &= (l/\Lambda)^{1/4} \theta_0 \\ E(k_\perp) &= C_k^M \epsilon^{2/3} k_\perp^{-5/3} (\mathbf{k}_\perp \Lambda)^{1/6} \\ l/\Lambda &\sim (\lambda/\Lambda)^{1/2} \end{aligned}$$

Mason et al 2011, Perez et al 2012 21

Physics of the dynamic alignment

Hydrodynamics:
$$\frac{\partial}{\partial t}\mathbf{v} + (\mathbf{v}\cdot\nabla)\mathbf{v} = -\nabla p + \nu\nabla^2\mathbf{v}$$

 $E = \frac{1}{2}\int \mathbf{v}^2(\mathbf{x}) d^3x$

MHD:

$$\partial_t \mathbf{v} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\frac{1}{\rho_0} \nabla p + \frac{1}{4\pi\rho_0} (\mathbf{B} \cdot \nabla) \mathbf{B} + \nu \nabla^2 \mathbf{v}$$

$$\partial_t \mathbf{B} = \nabla \times [\mathbf{v} \times \mathbf{B}] + \eta \nabla^2 \mathbf{B}$$

$$E = \frac{1}{2} \int (v^2 + b^2) d^3 x \quad H^C = \int (\mathbf{v} \cdot \mathbf{b}) d^3 x$$

Energy E is dissipated faster than cross-helicity H^C

$$\frac{\delta}{\delta \mathbf{v}} \left[\int (v^2 + b^2) d^3 x - \lambda \int (\mathbf{v} \cdot \mathbf{b}) d^3 x \right] = 0$$

$$\frac{\delta}{\delta \mathbf{b}} \left[\int (v^2 + b^2) d^3 x - \lambda \int (\mathbf{v} \cdot \mathbf{b}) d^3 x \right] = 0$$

$$\bigcup$$

$$\mathbf{v}(\mathbf{x}) = \pm \mathbf{b}(\mathbf{x})$$

Angular alignment between b_{λ} and v_{λ} role of resolution

Alignment is preserved in well resolved simulations at all scales, down to discretization scale

Alignment is broken in under-resolved simulations

Modeling of small scales should preserve the alignment

Scale-Dependent Dynamic Alignment

3D anisotropic eddies

Goldreich-Sridhar 1995 "eddy":	Dynamic alignment:
$\delta v_\lambda \propto \lambda^{1/3} ~l \sim \lambda^{2/3}$	$\delta v_\lambda \propto \lambda^{1/4} ~~ l \sim \lambda^{1/2}$
line displacement: $~\xi~\propto~\delta b_\lambda l$ ~ λ	line displacement: $\xi \propto \delta b_\lambda l ~oldsymbol{\sim} \lambda^{3/4}$
As the scale de $\lambda \rightarrow 0$, turns into filame turns into c agrees with	ecreases, ent teurrent sheet h numerics!

How strong B₀ is "strong"?

Large-scale magnetic field becomes essential when $B_0/b > 3$.

Mason et al 2006

Dynamic alignment and 3D anisotropy

Numerical scheme should correctly reproduce progressively increasing alignment and 3D anisotropy of small scale eddies.

Magnetic and kinetic spectra in the solar wind

Podesta et al (2007)

Energy spectra in the solar wind and in numerical simulations

Solar wind observations: spectral indices in 15,472 independent measurements. (From 1998 to 2008, fit from 1.8×10^{-4} to 3.9×10^{-3} Hz)

Numerical simulations: spectral indices in 80 independent snapshots, separated by a turnover time.

S.B., J. Perez, J Borovsky & J. Podesta (2011)

Residual energy in MHD turbulence

$$\begin{split} \langle \mathbf{z}^{+}(\mathbf{k}) \cdot \mathbf{z}^{+}(\mathbf{k}') \rangle &= e^{+}(k_{\parallel}, k_{\perp}) \delta(\mathbf{k} + \mathbf{k}') \\ \langle \mathbf{z}^{-}(\mathbf{k}) \cdot \mathbf{z}^{-}(\mathbf{k}') \rangle &= e^{-}(k_{\parallel}, k_{\perp}) \delta(\mathbf{k} + \mathbf{k}') \\ \langle \mathbf{z}^{+}(\mathbf{k}) \cdot \mathbf{z}^{-}(\mathbf{k}') \rangle &= q^{r}(k_{\parallel}, k_{\perp}) \delta(\mathbf{k} + \mathbf{k}') \qquad \neq \mathbf{0} \\ \langle \mathbf{z}^{+} \cdot \mathbf{z}^{-} \rangle &= \langle v^{2} - b^{2} \rangle \quad \text{residual energy} \end{split}$$

- -- need 3 correlation functions to describe two fields
- residual energy plays important role in MHD dynamics.
 e.g., the spectrum of weak MHD turbulence cannot be derived correctly without residual energy

Residual energy in MHD turbulence

$$\begin{split} \langle \mathbf{z}^{+}(\mathbf{k}) \cdot \mathbf{z}^{+}(\mathbf{k}') \rangle &= e^{+}(k_{\parallel}, k_{\perp}) \delta(\mathbf{k} + \mathbf{k}') \\ \langle \mathbf{z}^{-}(\mathbf{k}) \cdot \mathbf{z}^{-}(\mathbf{k}') \rangle &= e^{-}(k_{\parallel}, k_{\perp}) \delta(\mathbf{k} + \mathbf{k}') \\ \langle \mathbf{z}^{+}(\mathbf{k}) \cdot \mathbf{z}^{-}(\mathbf{k}') \rangle &= q^{r}(k_{\parallel}, k_{\perp}) \delta(\mathbf{k} + \mathbf{k}') \\ \langle \mathbf{z}^{+} \cdot \mathbf{z}^{-} \rangle &= \langle v^{2} - b^{2} \rangle \quad \text{residual energy} \end{split}$$

Numerical simulations should correctly reproduce small-scale residual energy

Unifying picture of MHD turbulence

Wang et al 2011

Unifying picture of MHD turbulence

Conclusions

- Numerical schemes should correctly capture the essential properties of MHD turbulence at small scales:
- $\frac{\delta b}{B_0} \le 1/3$, otherwise turbulence is close to Kolmogorov;
- Scale dependent anisotropy of small-scale fluctuations with respect to the local magnetic field;
- Scale dependent correlation (alignment) of v and b fluctuations;
- residual energy.