Magnetic helicity in LES

- Magnetic, kinetic, cross helicity in LES
 - physical effects caused by them
 - captured in LES? How?
- Can LES take us further than DNS
 - examples
- Mean-field simulations (MFS)
 - alpha effect dynamos
 - negative effective magnetic presssure,

—

With input from...

- Eric Blackman: inverse transfer in dynamos
- Axel Brandenburg: 2 examples of Rm dependence
- Bill Matthaeus: 1/f noice as a consequence
- Annick Pouquet: what I don't understand ...
- John Shebalin: rotation and helicity
- Hussein Aluie: cross helicity
- Nobu(mitsu) Yokoi: SGS model with helicity

Example 1: evidence for Rm dependence

- Similar to SS dynamo at early times
- Inverse cascade/transfer behavior
- Resistively slow saturation (!)

Example 2: magnetic helicity flux

$$\frac{\mathrm{d}}{\mathrm{d}t} \left\langle \overline{\mathbf{A}} \cdot \overline{\mathbf{B}} \right\rangle = +2 \left\langle \overline{\mathbf{E}} \cdot \overline{\mathbf{B}} \right\rangle - 2 \eta \left\langle \overline{\mathbf{J}} \cdot \overline{\mathbf{B}} \right\rangle - \nabla \cdot \mathbf{F}_{\mathrm{m}}$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \langle \mathbf{a} \cdot \mathbf{b} \rangle = -2 \langle \overline{\mathbf{E}} \cdot \overline{\mathbf{B}} \rangle - 2\eta \langle \mathbf{j} \cdot \mathbf{b} \rangle - \nabla \cdot \mathbf{F}_{\mathrm{f}}$$

- EMF and resistive terms still dominant
- Fluxes import at large Rm ~ 1000
- Rm based on $k_{\rm f}$
- Smaller by 2π

Gauge-invariant in steady state!

