Turbulent Reconnection, Flux-Freezing, and Coarse-Graining

Gregory L. Eyink Dept. of Applied Mathematics & Statistics and Dept. of Physics & Astronomy The Johns Hopkins University

GTP Large-Eddy Simulations of MHD Turbulence May 20-23, 2013 NCAR, Boulder, CO Flux-Freezing in NOT Violated in Turbulence, but Becomes Intrinsically Stochastic

Richardson dispersion of field-lines underlies the Lazarian-Vishniac 1999 theory (LV99).

Reconnection in the sense of violation of standard magnetic-flux conservation (J. M. Greene, 1993) occurs everywhere in a turbulent flow, not (only) at intense current sheets!

Large-Scale Turbulent Reconnection Involves Coherent Transport of Magnetic Flux

Figure 4. Schematic three-dimensional visualization of the reconnection rate evaluation. A_+ and A_- areas are defined by the sign of the B_x -component.

(Kowal et al., 2009)

120

100 80

60 40

The dominant "reconnection" electric field is motional field $E = -u \times B$ induced by outflow of already-reconnected field lines

Challenge: The width of turbulent reconnection zone $\Delta = L_x M_A^2 \min\{(L_x/L_i)^{1/2}, (L_i/L_x)^{1/2}\}$ predicted by LV99 can be much smaller than L_i and L_x for $M_A = u_{rms}/v_A < 1$.

Coarse-Grained MHD can Account for Fast Reconnection without Microscale Physics The *turbulent electric field* $\mathbf{E}_{\ell}^{\text{turb}} = -\left[\overline{(\mathbf{u} \times \mathbf{B})}_{\ell} - \overline{\mathbf{u}}_{\ell} \times \overline{\mathbf{B}}_{\ell}\right]$ is of order $\delta u(\ell) \delta b(\ell)$. Note that $\overline{\mathbf{E}}_{\ell}^{\text{Ohm}} = \eta \overline{\mathbf{j}}_{\ell} \sim \eta \delta B(\ell)/\ell \ll \mathbf{E}_{\ell}^{\text{turb}}$ for $\ell \delta u(\ell) \gg \eta$, $\overline{\mathbf{E}}_{\ell}^{\text{Hall}} \sim \delta_i (\delta b(\ell))^2/\ell \ll \mathbf{E}_{\ell}^{\text{turb}}$ for $\ell \gg \delta_i$

Consider the turbulent loop-voltage

$$\overline{\Phi}_{\ell}(C,t) = \oint_{\overline{C}_{\ell}(t)} \mathbf{E}_{\ell}^{\mathsf{turb}}(\mathbf{x},t) \cdot d\mathbf{x}$$

with $\overline{C}_{\ell}(t)$ advected by the coarse-grained velocity $\overline{\mathbf{u}}_{\ell}$. Turbulent voltage is independent of the filtering scale ℓ (inside the inertial range) if and only if at least one of the following holds (Eyink & Aluie, 2006):

- (i) Either u or B (or both) diverge to infinity at a point on the loop C(t)
- (ii) A joint tangential discontinuity of \mathbf{u} and \mathbf{B} (current and vortex sheet) intersects the loop C(t) in a set of finite length.
- (iii) The material curve C(t) is a fractal with infinite length.

(iii) is inapplicable in 2D, but it is expected in 3D. (iii) implies that small-scale turbulent reconnection can occur with vanishing micro-scale electric fields.

In GS95 and other theories ignoring intermittency $\mathbf{E}_{\ell}^{\text{turb}} \sim (\varepsilon \ell_{\perp})^{2/3}, \quad \mathbf{E}^{\text{Ohm}} = \eta \mathbf{j} \sim (\eta \varepsilon)^{1/2}$