Frank Jenko

Max Planck Institute for Plasma Physics

GTP Workshop on LES and MHD Turbulence Session 2: Anisotropy and Kinetic Effects

May 20 – 23, 2013

NCAR, Boulder, Colorado, USA

Key questions to address

What happens at the kinetic tail of the MHD cascade?
 Ex 1: Heating of the solar corona and solar wind acceleration
 Ex 2: Radiation from (hot) black hole accretion flows

- Note: Combines anisotropy and kinetic effects!
- Option 1: "Collisionless" damping of (quasi-)linear waves
 Efficiency of Landau damping in a turbulent environment?
 Significant deviations from Maxwellian distribution functions?

Option 2: Particle acceleration (formation of current sheets)

- Magnetic reconnection in a turbulent environment?
- □ Role of strong guide field?

Promising advances in kinetic simulation

Thanks to the continuous advance in supercomputing power, "serious" kinetic turbulence simulations have become feasible

Recently, strongly growing interest and activity in this area

From magneto-hydrodynamics to kinetics

Charged plasma particles undergo mostly small-angle (distant) Coulomb collisions.

Hot and/or dilute plasmas are almost collisionless. Here, MHD is not applicable; one must use a kinetic description!

Vlasov (collisionless Boltzmann) equations (α=species label)

$$\begin{aligned} \frac{\partial f_{\alpha}}{\partial t} + \mathbf{v} \cdot \nabla f_{\alpha} + \frac{q_{\alpha}}{m_{\alpha}} \Big[\mathbf{E} + \frac{\mathbf{v} \times \mathbf{B}}{c} \Big] \cdot \nabla_{v} f_{\alpha} &= 0 \\ f_{\alpha} = f_{\alpha}(\mathbf{x}, \mathbf{v}, t) & \quad \text{...from Liouville equation via BBGKY hierarchy} \end{aligned}$$

...plus Maxwell's equations (w/o displacement current)

From kinetics to gyrokinetics

Tail of the MHD cascade is gyrokinetic!

Large magnetic field (points into the plane), causing **strong anisotropy**

Electrostatic potential fluctuations (color-coded)

Particle orbit = fast gyromotion + slow (ExB) drift

Basic idea of gyrokinetics:

Remove the fast gyromotion $\omega \ll \Omega$

Introduce charged rings as quasiparticles; go from particle to **gyrocenter coordinates**

Brizard & Hahm, Rev. Mod. Phys. **79**, 421 (2007)

The nonlinear gyrokinetic equations

 $f = f(\mathbf{X}, v_{\parallel}, \mu; t)$

Advection/Conservation equation

$$\frac{\partial f}{\partial t} + \dot{\mathbf{X}} \cdot \frac{\partial f}{\partial \mathbf{X}} + \dot{v}_{\parallel} \frac{\partial f}{\partial v_{\parallel}} = 0$$

$$\dot{\mathbf{X}} = v_{\parallel} \mathbf{b} + \frac{B}{B_{\parallel}^*} \left(\frac{v_{\parallel}}{B} \bar{\mathbf{B}}_{1\perp} + \mathbf{v}_{\perp} \right)$$

X = gyrocenter position \lor_{II} = parallel velocity μ = magnetic moment

Appropriate field equations

$$\frac{n_1}{n_0} = \underbrace{\bar{n}_1}_{n_0} - \left(1 - \|I_0^2\|\right) \frac{e\phi_1}{T} + \|xI_0I_1\| \frac{B_1\|}{B}$$

$$\mathbf{v}_{\perp} \equiv \frac{c}{B^2} \,\overline{\mathbf{E}}_1 \times \mathbf{B} + \frac{\mu}{m\Omega} \,\mathbf{b} \times \nabla (B + \overline{B}_{1\parallel}) + \frac{c_{\parallel}}{\Omega} \,(\nabla \times \mathbf{b})_{\perp} \qquad \qquad \nabla_{\perp}^2 A_{1\parallel} = -\frac{4\pi}{c} \sum \overline{J_{1\parallel}}$$
$$\dot{v}_{\parallel} = \frac{\dot{\mathbf{X}}}{mv_{\parallel}} \cdot \left(e\overline{\mathbf{E}}_1 - \mu \nabla (B + \overline{B}_{1\parallel})\right) \qquad \qquad \frac{B_{1\parallel}}{B} = -\sum \epsilon_{\beta} \left(\frac{\overline{p}_{1\perp}}{n_0T} + \|xI_1I_0\| \frac{e\phi_1}{T} + \|x^2I_1^2\| \frac{B_{1\parallel}}{B}\right)$$

".2

GENE code (grid-based, CFD-like, >260 kcores): http://gene.rzg.mpg.de

Entropy-like quadratic ideal invariant

Kinetics: Free energy $\mathcal{E} = U - T_0 S = K + \mathcal{E}_E + \mathcal{E}_M - T_0 S$

$$= \sum_{j} T_{0j} \int d^3 \mathbf{x} d^3 \mathbf{v} \frac{\tilde{f}_{1j}^2}{2 F_{0j}} + \int d^3 \mathbf{x} \frac{\mathbf{E}^2}{8\pi} + \int d^3 \mathbf{x} \frac{\mathbf{B}^2}{8\pi}$$

Entropy part (tends to dominate) up to order two in \tilde{f}_{1j}

distribution function \tilde{f}_j = Maxwellian distribution function F_{0j} + fluctuation part \tilde{f}_{1j}

××[×]××

Direct cascade of free energy

Bañón Navarro et al., PRL 2011

Power law spectra

Solid lines: **Predictions from** Kolmogorov-like phenomenology

Remark: Gyrokinetic LES models

Apply LES filter:

$$\partial_t f_{ki} = L[f_{ki}] + N[\phi_k, f_{ki}] - D[f_{ki}]$$

 $\partial_t \overline{f_k} = L[\overline{f_k}] + N[\overline{\phi_k}, \overline{f_k}] + T_{\overline{\Delta}, \Delta^{\text{DNS}}} - D[\overline{f_k}]$

Sub-grid term: $T_{\overline{\Delta},\Delta^{\text{DNS}}} = \overline{N}[\phi_k, f_k] - N[\overline{\phi_k}, \overline{f_k}] \approx c_{\perp} k_{\perp}^4 h_{ki}$

Free energy spectra vs c_{\perp} :

Cyclone Base Case (ITG)

- $\star c_{\perp}$ too small
 - \Rightarrow not enough dissipation
- $\star c_{\perp}$ too strong
 - \Rightarrow overestimates injection
- * $c_{\perp} = 0.375$ good agreement
 - \rightarrow "plateau" for $c_{\perp} \in [0.25, 0.625]$
 - \rightarrow holds for k_x

Large savings in computational cost; use dynamic procedure...

Linear waves in a turbulent environment

Role of collisionless damping not clear a priori

Gyrokinetic simulations of the solar wind dispersion / dissipation range

Reconnection in turbulent environment

Traditional reconnection models assume **simplifed geometries**

In practice, reconnection often occurs in a **turbulent environment**

Recent attempts to attack this problem (e.g., Kowal 09, Loureiro 09, Servidio 09-12)

Efficient approach in the presence of a strong guide field: **gyrokinetics**

Gyrokinetic turbulent reconnection

Use random $f_1(t = 0) \propto k_x^{-1}k_y^{-1} + \text{small v-space perturbation}$

- Islands in A_{\parallel} (left)
- Current sheets visible in j_{\parallel} (right), aligned to magnetic potential, typical scale $\lambda = d_e = \frac{c}{\omega_{pe}}$

Pueschel, Jenko, Told & Büchner, PoP 2011

Generation of parallel electric fields by the turbulence

Key issues to explore

Better understanding of MHD inertial range physics
 Defines interface to kinetic dissipation range physics
 Quantitative description of anisotropy
 Talk by W. Matthaeus

(Gyro-)Kinetic studies of dissipation range physics
 Ab initio approach, no free parameters
 Window of opportunity (HPC & observations)
 Talk by W. Daughton

Applications to various space and astrophysical problems Talk by J. Stone