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Key questions to address

What happens at the kinetic tail of the MHD cascade?
Ex 1: Heating of the solar corona and solar wind acceleration
Ex 2: Radiation from (hot) black hole accretion flows
Note: Combines anisotropy and kinetic effects!

Option 1: ,Collisionless” damping of (quasi-)linear waves
Efficiency of Landau damping in a turbulent environment?
Significant deviations from Maxwellian distribution functions?

Option 2: Particle acceleration (formation of current sheets)

Magnetic reconnection in a turbulent environment?
Role of strong guide field?
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Promising advances in kinetic simulation

macrophysics
(collisional)

inextricably
linked

microphysics
(collisionless)

3D magneto-
hydrodynamics

current workhorse of
plasma astrophysics

promising initial
results, calling
for more work

5D gyrokinetics

long considered
too costly, but
now becoming

more accessible

6D kinetics

[
»

computational effort

Thanks to the continuous advance in supercomputing power,
,serious” kinetic turbulence simulations have become feasible

Recently, strongly growing interest and activity in this area
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From magneto-hydrodynamics to kinetics

Charged plasma particles undergo mostly
small-angle (distant) Coulomb collisions.

Hot and/or dilute plasmas are almost collisionless.
Here, MHD is not applicable; one must use a kinetic description!

Vlasov (collisionless Boltzmann) equations (a=species label)
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fa = fa(x,v. 1) ...from Liouville equation via BBGKY hierarchy

...plus Maxwell’s equations (w/o displacement current)
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From kinetics to gyrokinetics

Tail of the MHD cascade is gyrokinetic!

Large magnetic field (points into the plane),
causing strong anisotropy

Electrostatic potential fluctuations (color-coded)

Particle orbit = fast gyromotion + slow (ExB) drift

Basic idea of gyrokinetics: m

Remove the fast gyromotion w2

Introduce charged rings as quasiparticles; Q VE+ Vi +VVB..

go from particle to gyrocenter coordinates

Brizard & Hahm, Rev. Mod. Phys. 79, 421 (2007)
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The nonlinear gyrokinetic equations

f - f(X7 'U“,[.L; t)
Advection/Conservation equation X = gyrocenter position
vu = parallel velocity
of of of U = magnetic moment
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GENE code (grid-based, CFD-like, >260 kcores): http://gene.rzg.mpg.de
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Entropy-like quadratic ideal invariant

Kinetics: Freeenergy £ =U -1y S=K+E&g+&y—10S
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Entropy part (tends to dominate) up to order two in fi;

distribution function f; = Maxwellian distribution function Fy;

+ fluctuation part flj
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Power law spectra

o Free energy wavenumber spectra

Solid lines:

Predictions from
Kolmogorov-like
phenomenology

k| Banon Navarro et al., PRL 2011
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Remark: Gyrokinetic LES models

Apply LES filter: Ot fri = L|fri) + N|bk, fri| — D| fril
Ot fr. = LIfe] + N[ow, fr] + Tx aons — D[f]
Sub-grid term: Tx aons = N(og, fr] = N, fr] = Lkl hy

Free energy spectra vs ¢, :
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Large savings in computational cost; use dynamic procedure...
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Linear waves In a turbulent environment
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Role of collisionless damping not clear a priori



"
Gyrokinetic simulations of the solar wind
dispersion / dissipation range

Sahraoui et al., PRL 2009 Howes et al., PRL 2011
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Reconnection in turbulent environment

Traditional reconnection models Sweet—Parker model
assume simplifed geometries L

i
N—

In practice, reconnection often /

occurs in a turbulent environment Kowal et al. Ap) '09

Turbulent model

Recent attempts to attack this problem
(e.g., Kowal 09, Loureiro 09, Servidio 09-12)

Efficient approach in the presence of
a strong guide field: gyrokinetics
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Gyrokinetic turbulent reconnection

urrent sheets visible in j (right),
typical scale A = de =

aligned to magnetic potential,
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Generation of parallel electric fields by the turbulence
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Key issues to explore

Better understanding of MHD inertial range physics
Defines interface to kinetic dissipation range physics

Quantitative description of anisotropy
Talk by W. Matthaeus

(Gyro-)Kinetic studies of dissipation range physics
Ab initio approach, no free parameters

Window of opportunity (HPC & observations)
Talk by W. Daughton

Applications to various space and astrophysical problems
Talk by J. Stone



