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Protoplanetary disks

• Size:

• Temperature:

• Number density: 

• Ionization fraction:

1011–1015 cm

103–101 K

⇠ 10�13

1010—1017 cm�3
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Magnetorotational instability

Field line

A
B

A

B

Main properties

• Due to an interaction between magnetic tension 
and epicyclic motions

• Not too strong magnetic fields required («weak 
field instability»)

• Need a sufficiently high ionization fraction

Balbus & Hawley 1991, Balbus 2003
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Protoplanetary disks

Courtesy of M. Flock
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The incompressible shearing 
box model

H x

y z

Vertical and toroidal total magnetic flux conserved

Boundary conditions

• Use shear-periodic boundary 
conditions= «shearing-sheet»

• periodic in y and z (non stratified box)

Radial turbulent transport 

x

z y

mean vertical field 
(«guide field»)
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MRI simulations
Typical simulation
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Pm vs large scale transport
with a guide field

P.-Y. Longaretti and G. Lesur: MRI-driven turbulent transport: the role of dissipation, channel modes and their parasites
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Fig. 4. Transport standard deviation as a function of the time interval τ
used to bin the transport data, for a given run (in this case, Re = 3200,
Rm = 800, and β = 100). This information is used to quantify the error
in the transport from the fit ∝τ−1/2 that is expected to hold for large
enough binning time τ (see text for details).
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Fig. 5. The dimensionless turbulent radial momentum transport α as a
function of the Prandtl number Pm and the field strength β for various
Reynolds numbers. black: β = 102; blue: β = 103; red: β = 104; !:
Re = 400; +: Re = 800; ♦: Re = 1600; ◦: Re = 3200; ×: Re = 6400;
the green starred data points correspond to the three more resolved runs
at Re = 20 000 and β = 103. Power law fits are also shown for each
value of β.

the initial work of Hawley et al. (1995). However, the varia-
tion of the index of the Prandtl number dependence with field
strength just discussed induces deviations from this scaling.

– There is a weaker, but systematic and significant increase of
the transport with increasing Reynolds number at any given
field strength and Prandtl number. This effect is real: for most
of our runs, this increase is larger than the standard deviation
in the transport, as quantified in the previous subsection. It is
also larger for the smaller Prandtl number values. This indi-
cates that the Prandtl number does not capture all the physics
of the correlation between transport and physical dissipation;
this point is further discussed below.

Our previous investigation was limited to β = 100. In the present
work, the Prandtl number dependence of the transport for this
field strength is consistent with our earlier findings. However,
the transport observed here is reduced by a factor ∼2; this is a
direct consequence of the reduced role played by the channel
mode in our horizontally extended simulation boxes.

For the lowest Prandtl number (1/4) and lowest field strength
(β = 104), only one point is reported in the graph. Our other
runs for this parameter have lower Reynolds numbers, and are
too close to the linear stability threshold of Eq. (23) to sustain
full 3D turbulent motions. These runs show 2D or quasi-2D be-
havior, with very different transport efficiency and behavior. The
data point we have retained might still be weakly affected by
such effects.

As pointed out above, Fig. 5 indicates that the spread with
Reynolds number at a given Prandtl number increases with de-
creasing Prandtl number. In fact, two different regimes can be
noted, one for Pm ≤ 1 and one for Pm = 4.

At Pm = 4, the transport seems to be only weakly depen-
dent on Re (or Rm), at least for large enough Reynolds number:
the transport increases by 10% to 50% (depending on β) while
the Reynolds number is multiplied by a factor of 4. This trend
can also be found in the work of Simon & Hawley (2009), where
the MRI turbulent transport in presence of a toroidal field is in-
vestigated with more emphasis on the Pm > 1 regime. Their
Figs. 6 and 7 show that, for Pm = 2 and 4 at least (the only ones
with enough data in the Pm > 1 regime), the transport increases
steadily with the Reynolds number for Re <∼ 1000 and much
more weakly for Re >∼ 1000.

On the contrary, the spread in Reynolds number for Pm ≤ 1
is substantial, and systematic. Such a spread was not detected in
our earlier investigation, due to the larger fluctuations in trans-
port related to the box aspect ratio, as discussed earlier. In fact,
this dispersion seems to be an effect of the magnetic Reynolds
number. To illustrate this point, the transport is represented in
Fig. 6 as a function of Rm (left panel) and Re (right panel),
for Pm ≤ 1; the colors describe different field strengths (β = 102

to 104 from top to bottom). The statistics in the number of points
at any given Re or Rm is rather low; however, it appears quite
clearly that the dispersion of the points at any given Reynolds
number is substantially larger in Re (with varying Rm) than
in Rm (with varying Re). The largest Reynolds number data
strongly support this conclusion. Furthermore, the fits5 of the
transport as a function of Rm indicate the Rm dependence of the
transport for Pm ≤ 1 is very similar to its Pm dependence as
shown in Fig. 5. This strongly suggests that the Pm dependence
observed on this figure is in fact mostly a Rm dependence for
Pm ≤ 1. Including the Pm = 4 data destroys this correlation,
which strengthens the idea that there are two regimes, depend-
ing on the Prandtl number (a feature that may be related to the
existence of a transition around Pm = 2 in zero net flux shear-
ing box simulations). The relevant results of Simon & Hawley
(2009); although less detailed, are consistent with these findings
(see their Fig. 7).

5. Role of channel and parasitic modes

5.1. Linear physics and turbulent transport

Lesur & Longaretti (2007) concluded that there was no di-
rect connection between the Prandtl dependence of MRI-driven

5 The Re = 20 000 data points have not been included in this fit to
make the comparison between the two dependences in the same condi-
tions.
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� = 100
� = 1000
� = 10000

↵

Pm

20000 < Re < 60000

Protoplanetary 
discs Pm~10-5

Reaction of small scales (Pm) on large scales (α)

MHD subgrid model should be a function of Pm?

Longaretti & Lesur 2010
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Pm vs large scale transport
without a guide field

No turbulence for Pm<2?

1128 S. Fromang et al.: MHD turbulence in accretion disks. II.

Fig. 6. Results obtained with NIRVANA (left panel), a spectral code (middle panel) and the PENCIL code (right panel) for the comparison case.
All panels display the time history of αRey, αMax and α using the same conventions as Fig. 1, with which they should be compared. Good agreement
is found for model 128Re3125Pm4 regardless of the numerical scheme used.

Table 2. Details of the runs performed using different codes as a way of checking the results for model 128Re3125Pm4. The first three columns
respectively describe the code used, the resolution (Nx, Ny,Nz) and the box size (Lx, Ly, Lz). The last three columns summarise the outcome by
giving the time averaged values of αRey, αMax and α (averaged between t = 40 and the end of each simulation). Note that the first line simply
recalls the results of model 128Re3125Pm4 which can also be found in Table 1. All models have Re = 3125 and Pm = 4.

Code Resolution Box size αRey αMax α

ZEUS (128, 200, 128) (H, πH,H) 1.6 × 10−3 7.4 × 10−3 9.1 × 10−3

NIRVANA (128, 200, 128) (H, πH,H) 1.7 × 10−3 7.8 × 10−3 9.5 × 10−3

SPECTRAL CODE (64, 128, 64) (H, πH,H) 1.4 × 10−3 9.4 × 10−3 1.1 × 10−2

PENCIL CODE (128, 200, 128) (H, πH,H) 1.4 × 10−3 6.8 × 10−3 8.2 × 10−3

Fig. 7. Time history of αMax in model 128Re800Pm16 (dotted-dashed
line), 128Re1600Pm8 (dashed line), 128Re3125Pm4 (solid line),
128Re6250Pm2 (dotted line) and 128Re12500Pm1 (dotted-dotted-
dashed line). In each cases, ReM = 12 500, while Pm is gradually de-
creased from 16 for the top curve to 1 for the bottom curve. The results
show an increase of activity when the Prandtl number increases. In ad-
dition, turbulent transport vanishes when Pm ≤ 2.

demanding resolution (Nx,Ny,Nz) = (256, 400, 256) in this case
which should be enough to ensure that numerical dissipation will
not strongly affect the results. Remember also that we showed
in Paper I that the numerical magnetic Reynolds number is of
the order of 105 for such a resolution, well above the magnetic
Reynolds number of that model, which also gives confidence
that numerical dissipation should not be dominant in this case.
Reasoning along the same lines, we also used the same high res-
olution for model 256Re25000Pm1, for which Re = 25 000 and
Pm = 1.

The time averaged transport coefficients we measured in all
the simulations we performed are summarised in Table 1 (for all
models, this average is done between t = 40 and the end of the
simulation). In the present section, we now focus on a detailed
examination of the results. Figure 7 shows the time history of

Fig. 8. Same as Fig. 7, but for models 128Re800Pm8 (solid line),
128Re1600Pm4 (dashed line) and 128Re3125Pm2 (dotted-dashed
line), in which turbulence dies after about 5 orbits. In each cases,
ReM = 6250, while Pm decreases from 8 to 2.

αMax for all the simulations having ReM = 12 500. They are char-
acterised by different values of the viscosity, in such a way that
Pm = 16 (dotted-dashed line), Pm = 8 (dashed line), Pm = 4
(solid line), Pm = 2 (dotted line) and Pm = 1 (dotted-dotted-
dashed line). It is obvious from these models that angular mo-
mentum transport increases with the Prandtl number, in agree-
ment with the results of Lesur & Longaretti (2007) obtained
in the presence of a net vertical flux. In addition, MHD turbu-
lence is observed to die down in the last two models. The crit-
ical Prandtl number below which turbulence is not sustained is
probably close to Pm = 2. Indeed, model 128Re12500Pm2, for
which Pm = 2, is seen to be marginal as it takes about 90 or-
bits for the turbulence to decay. In the “alive” cases that display
turbulent activity, time averaged values of the total stress give
α = 4.4 × 10−2, 1.9 × 10−2 and 9.1 × 10−3, respectively when
Pm = 16, 8 and 4. For fixed ReM, this shows an almost linear
scaling with viscosity. As demonstrated with Fig. 8, the situa-
tion is similar when using ReM = 6250. The three curves on this

Pm=8

Pm=4

Pm=2

Fromang et al. 2007

t



05/23/2013GTP Workshop on Large-Eddy Simulations of MHD TurbulenceGeoffroy Lesur

ILES and no guide field MRI:
 a worst case scenario?

ILES fails to converge to a solution

Not true anymore for stratified boxes (Davis et al.2010)

64x100x64 128x200x128 256x400x256

Fromang & Papaloizou 2007
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Introducing LES for the sub-resistive 
cascade (à la Ponty et al. 2004)

1/H k1/lη 1/lν

EMag(k)
EKin(k)

turbulent cascade

Turbulent transport Pm<1

Energy injection

Chollet Lesieur 1981
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Reference DNS

P.-Y. Longaretti and G. Lesur: MRI-driven turbulent transport: the role of dissipation, channel modes and their parasites
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Fig. 4. Transport standard deviation as a function of the time interval τ
used to bin the transport data, for a given run (in this case, Re = 3200,
Rm = 800, and β = 100). This information is used to quantify the error
in the transport from the fit ∝τ−1/2 that is expected to hold for large
enough binning time τ (see text for details).
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Transport ∝ Pmb, b = 0.34
Transport ∝ Pmb, b = 0.57
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Fig. 5. The dimensionless turbulent radial momentum transport α as a
function of the Prandtl number Pm and the field strength β for various
Reynolds numbers. black: β = 102; blue: β = 103; red: β = 104; !:
Re = 400; +: Re = 800; ♦: Re = 1600; ◦: Re = 3200; ×: Re = 6400;
the green starred data points correspond to the three more resolved runs
at Re = 20 000 and β = 103. Power law fits are also shown for each
value of β.

the initial work of Hawley et al. (1995). However, the varia-
tion of the index of the Prandtl number dependence with field
strength just discussed induces deviations from this scaling.

– There is a weaker, but systematic and significant increase of
the transport with increasing Reynolds number at any given
field strength and Prandtl number. This effect is real: for most
of our runs, this increase is larger than the standard deviation
in the transport, as quantified in the previous subsection. It is
also larger for the smaller Prandtl number values. This indi-
cates that the Prandtl number does not capture all the physics
of the correlation between transport and physical dissipation;
this point is further discussed below.

Our previous investigation was limited to β = 100. In the present
work, the Prandtl number dependence of the transport for this
field strength is consistent with our earlier findings. However,
the transport observed here is reduced by a factor ∼2; this is a
direct consequence of the reduced role played by the channel
mode in our horizontally extended simulation boxes.

For the lowest Prandtl number (1/4) and lowest field strength
(β = 104), only one point is reported in the graph. Our other
runs for this parameter have lower Reynolds numbers, and are
too close to the linear stability threshold of Eq. (23) to sustain
full 3D turbulent motions. These runs show 2D or quasi-2D be-
havior, with very different transport efficiency and behavior. The
data point we have retained might still be weakly affected by
such effects.

As pointed out above, Fig. 5 indicates that the spread with
Reynolds number at a given Prandtl number increases with de-
creasing Prandtl number. In fact, two different regimes can be
noted, one for Pm ≤ 1 and one for Pm = 4.

At Pm = 4, the transport seems to be only weakly depen-
dent on Re (or Rm), at least for large enough Reynolds number:
the transport increases by 10% to 50% (depending on β) while
the Reynolds number is multiplied by a factor of 4. This trend
can also be found in the work of Simon & Hawley (2009), where
the MRI turbulent transport in presence of a toroidal field is in-
vestigated with more emphasis on the Pm > 1 regime. Their
Figs. 6 and 7 show that, for Pm = 2 and 4 at least (the only ones
with enough data in the Pm > 1 regime), the transport increases
steadily with the Reynolds number for Re <∼ 1000 and much
more weakly for Re >∼ 1000.

On the contrary, the spread in Reynolds number for Pm ≤ 1
is substantial, and systematic. Such a spread was not detected in
our earlier investigation, due to the larger fluctuations in trans-
port related to the box aspect ratio, as discussed earlier. In fact,
this dispersion seems to be an effect of the magnetic Reynolds
number. To illustrate this point, the transport is represented in
Fig. 6 as a function of Rm (left panel) and Re (right panel),
for Pm ≤ 1; the colors describe different field strengths (β = 102

to 104 from top to bottom). The statistics in the number of points
at any given Re or Rm is rather low; however, it appears quite
clearly that the dispersion of the points at any given Reynolds
number is substantially larger in Re (with varying Rm) than
in Rm (with varying Re). The largest Reynolds number data
strongly support this conclusion. Furthermore, the fits5 of the
transport as a function of Rm indicate the Rm dependence of the
transport for Pm ≤ 1 is very similar to its Pm dependence as
shown in Fig. 5. This strongly suggests that the Pm dependence
observed on this figure is in fact mostly a Rm dependence for
Pm ≤ 1. Including the Pm = 4 data destroys this correlation,
which strengthens the idea that there are two regimes, depend-
ing on the Prandtl number (a feature that may be related to the
existence of a transition around Pm = 2 in zero net flux shear-
ing box simulations). The relevant results of Simon & Hawley
(2009); although less detailed, are consistent with these findings
(see their Fig. 7).

5. Role of channel and parasitic modes

5.1. Linear physics and turbulent transport

Lesur & Longaretti (2007) concluded that there was no di-
rect connection between the Prandtl dependence of MRI-driven

5 The Re = 20 000 data points have not been included in this fit to
make the comparison between the two dependences in the same condi-
tions.
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Anisotropy

G. Lesur and P.-Y. Longaretti: MRI non-linear energy transfers. I.
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Fig. 2. Energy Injection spectrum at Pm = 0.0625 (left) and Pm = 0.25 (right). Although the injection is significantly reduced at small Pm, shape
of the spectrum is similar and dominated by the largest scale.
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Fig. 3. Bidimensional magnetic energy spectra at Pm = 0.25. Left: (kx, kz) spectrum, averaged in ky. Centre: (kx, ky) spectrum, averaged in kz. Right:
(ky, kz) spectrum averaged in kx . Each contour correspond to a factor 10 in magnetic energy.

the IK phenomenology. Moreover, the magnetic field spectrum
does not follow any well-defined power law, as expected from
the wide and overlapping injection (see below) and dissipation
spectra, indicating that the spectrum we get is not an inertial
spectrum. We are therefore forced to conclude that although the
kinetic spectrum looks like an IK or Kolmogorov spectrum, it
is described neither by the IK or Kolmogorov phenomenologies
nor by recent extensions (Boldyrev 2005).

Changing the magnetic Prandtl number does not change the
power-law index for the kinetic energy. We note, however, two
major effects: the overall spectra amplitudes are reduced and
the dissipation scales move to larger scale as one reduces Pm.
These two effects are expected since it is known that smaller Pm
turbulence is associated with lower transport efficiency hence a
weaker injection of energy in the cascade. This effect is con-
firmed by the injection spectra (Fig. 2), which are significantly
reduced at smaller Pm.

We note that the energy injection peaks at the largest scale
of the box, although injection still exists at k ∼ 10. Therefore,
although a power-law spectrum is found for 2 < k < 10, this
spectrum cannot be described as an “inertial range” since energy
is still injected at these intermediate scales.

We present in Fig. 3 bidimensional spectra of magnetic en-
ergy for Pm = 0.25. Kinetic spectra are not shown as they

share essentially the same properties. These spectra were ob-
tained by averaging 3D energy spectra over 40 orbits and tak-
ing the average in the kx, ky, or kz directions. We first note a
strong anisotropy in the (kx, ky) plane which indicates that trail-
ing shearing waves (kxky > 0) have more energy than leading
shearing waves (kxky < 0). As we see below, this results in non-
zero shear transfer terms.

Looking at the aspect ratio of the energy contours, we see
that turbulence is slightly less anisotropic at large k than at small
k (the contours are less “elongated” at large k), although com-
plete isotropy is not yet reached in this simulation. Let us, how-
ever, point out that the spectral truncation (due to the finite res-
olution) tends to deform the contours at large k, which might
accelerate the return to isotropy. One should therefore perform
higher resolution runs (or at least double Ny) in order to confirm
this return to isotropy. In principle, one would expect a return
to isotropy at small scales if the non-linear transfer terms domi-
nate all the other terms (injection, body forces) at large enough
k. However, this is not always the case (e.g. in the presence of a
strong mean magnetic field).

The (kx, kz) spectrum shows that turbulence is essentially
isotropic at large k in that plane. For k ∼ 1, we find a slight
anisotropy where modes with kz ! 0 are favoured. This is prob-
ably a result of large-scale MRI unstable modes, which all have

A17, page 5 of 10

• No anisotropy associated to the guide field (           )

• Strong x-y anisotropy due to the shear

• Chollet-Lesieur not adapted in this case...
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LES vs DNS spectra
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Computation time gain~100

Have we reached an asymptotic regime for Pm<<1 ?
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LES vs DNS flows
DNS 384 pts/H LES 96 pts/H
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Conclusions

• MRI-driven turbulence is sensitive to small scale processes.

• Should MHD LES models depend on small scale physics? (locality ?)

• ILES sometimes fail to converge. In general, it automatically implies Pm~2-3.

• In the Pm<<1 limit, Chollet-Lesieur works well for the hydro cascade, despite 
the strong anisotropy (ILES for hydro seems to work as well)

• MRI without a guide field in the Pm<1 regime.

• Asymptotic regime in the Pm>>1 limit (full LES-MHD model)

LES challenges in the MRI context:


