Major progress in MHD turbulence:
NCAR and beyond

or

Ciao, Annick!

An incomplete personal view of the long and productive relationship
between NCAR and the French school of turbulence theory -- by W Matthaeus



precursors

e Turbulence theory (1960-1970)
— Kraichnan (DIA), Orszag (EDQNMA)...

e Turbulence computation (1971 —
— Orzsag Patterson PRL 1971
— Herring et al, 1973, 1974

e Computers! (CDC 7600, Cyber 200, CRAY...
— NCAR CRAY 1A (serial #3) first one purchased 1977

NCAR !



NCAR: site of the marriage of numerical simulations
and turbulence theory
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Emergence of the French turbulence group at CNRS-
Obs. de Nice & relationship with NCAR begins
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Possibility of an inverse cascade of magnetic helicity
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Big computations in MHD: Nice/NCAR

 Annick for MHD, like Steve Orszag for hydro, has led the
development of computational methods to accomplish

state-of-the-art computations

Helical and Nonhelical Turbulent Dynamos
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Dynamic alighment

Large amplitude “Alfven waves”
v = + b (Alfven units) is a soln. of MHD with/without mean field B,

Cascade times are such that cross helicity decays slower than energy
[Dobrowolny, Mangeney & Veltri PRL (1980)]

cross helicity/energy grows and flow become Alfvenic in time
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Evidence in simulations, and in solar wind
Very Alfvenic solar wind turbuelnce
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For nearly 50 years there have been arguments about
whether solar wind turbulence is “active” or a “fossil”
of solar dynamics
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Theory to the rescue!!

e 1998 Politano-Pouquet exact relations (Kolmogorov-
Yalgom law for third order moments)

PHYSICAL REVIEW E VOLUME 57, NUMBER 1 JANUARY 1998

von Karman—Howarth equation for magnetohydrodynamics and its consequences
on third-order longitudinal structure and correlation functions

H. Politano and A. Pouquet
Centre National de la Recherche Scientifique, UMR 6529, Observatoive de la Cote d’Azur, Boite Postale 4229,
06304 Nice Cedex 4, France
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Solar wind puzzle solved!

There has been a mini-industry in solar wind third order observations
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Geometry  Latitude Outward Inward Total

Full 3D Ecliptic 57*5 515 54 =7
Isotropic Ecliptic 105 =2 251 65 =1
2D+ 1D Ecliptic 140 =3 18 =3 79 £2
Isotropic Poles 1.8 £0.7 1.6 = 0.5 1.7 =0.9

Using Politano-Pouquet relations, the SW
cascade rates are directly measured as
300-1000 J/Kg-s at 1AU
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Observation of Inertial Energy Cascade in Interplanetary Space Plasma
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MHD turbulence produces complex flux tube and electric
current structures: manifestations of intermittency
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Slice & blowup

Figure 10. Same as in figure 9, but showing only the current intensity. The
associated movie (available from stacks.iop.org/NJIP/10/125007/mmedia) shows
the temporal evolution.



Very large scales (10013 cm):
Spatially structured turbulence
produces transport or “trapping”
boundaries

) radius of
Earth orbit

Ruffolo et al.2003

Bounda

ries are observed:

“dropouts” of Solar energetic particles
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H-FE ions vs arrival time
For 9 Jan 1999 SEP event
From Mazur et al, ApJ (2000)



conclusion

* Annick: Keep
up the good
work!

e NCAR:
— ???



Very small scale plasma kinetic structures:
High res. PIC simulations (H. Karimabadi, W. Daughton & V. Roytershteyn) show

intermittent kinetic scale dissipation with structure to electron skin depth.

8192x16384 PIC driven by large scale shear, map of |J|
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Detailed analyses:
Karimabadi et al, PoP 2013; Wan et al, PRL 2012; Wu et al, ApJ 2013
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Theoretical work in turbulence in A.P.s group

There has been enormous benefit and progress due to a long & committed

relationship between turbulence theory and MHD/fluid computations

in GTP in the past ~15 years

Current sheets & vorticity
Intermittency in 2D and 3D
Lagrangian-averaged (Alpha) model

Dynamo problem at non-unit Prandtl
number

Rotating fluids

Local alighments

Inverse cascade computations

Long time states of MHD
Non-universality in MHD (!!!)

LES

AMR and Spectral element computations
Scale to scale transfer in MHD

...etc

Applications of these ideas in:

e Planetary dynamo

e Stellar dynamo

e Coronal heating

e Solar wind cascade

* Transport and scattering of solar
energetic particles

* Space Weather

* Crossover to fusion

e Geophysical fluid dynamics

e Astrophysical flows (ISM, star
formation, SNRs)

 Computational physics
e Parallel computing
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