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Filtered MHD equations
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On the right-hand sides of equations the terms designate influence of subgrid terms
on the filtered part. To determine these terms, special turbulent parametrizations
based on large-scale values describing turbulent MHD flow must be used.

7y =p(uu) —uu )_—(B' ,~BiB) | Subgrid scale (SGS) or
b =(T|3j—§jﬁi)—(BU i B) " Subfilter-scale (SFS) terms

1]




Smagorinsky model for MHD

Approximating the subgrid energy dissipation with the aid of
the local resolved dissipation rate, «~72(25*:5")*> and &~ /2[j|* leads to
the classical Smagorinsky model and its straightforward MHD extension:
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Kolmogorov model for
MHD case

If the grid filter cutoff lies within the inertial spectral range of the homogeneously
turbulent system and the nonlinear exchange between resolved kinetic and
magnetic energy is much smaller than the respective dissipation, kinetic subgrid-
energy dissipation and magnetic subgrid-energy dissipation can be assumed to
depend only on time. Thus except a unit factor carrying the necessary
dimensions and an explicit filter scale dependence, both functions ¥ and @
can be absorbed by the nondimensional parameters yielding the Kolmogorov
scaling model
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Cross-helicity model

The cross helicity is H® = L (u-B)dv

With regard to the mixing length framework outlined above the functions ¢
and 7 are estimated as the product of subgrid dissipation and an associated
length scale. However, instead of the local resolved kinetic and magnetic

energy dissipation terms, the corresponding local cross-helicity dissipation
expressions
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the resolved vorticity =V Xv

the electric current density =V Xb



Cross-helicity model

The cross-helicity is related to the transfer between kinetic and magnetic
energies caused by the Lorentz force. Therefore, the cross helicity allows one

to estimate the energy exchange between large and small scales in the LES
method:

v, =C,pA| §|;J§Ub 2 - turbulent viscosity

i =2Y,pA’ | f||S"|  -isotropicterm  f = S!S [

. =D;A’sgn(j@) | jo['* - turbulent magnetic diffusivity

Since the energetically most favorable configuration of the local velocity and magnetic field is
V||B, any decrease of alignment of these two vectors increases locally the magnetic energy.
The process works inversely when the local alignment increases whereby the direction of
change is given by the sign of the local cross-helicity dissipation. The justification is based
on the existence of the inverse magnetic helicity cascade.



Scale-similarity model for
MHD case

The scale-similarity model is not of the eddy-viscosity-type. It is based on
the assumption that the component of the SGS most active in the energy
transfer from large to small scales can be estimated with sufficient accuracy
from the smallest resolved scale, which can be obtained by filtering the
subgrid-scale quantities
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Mixed model for compressible
MHD turbulence

The mixed model is a combination of two subgrid-scale closures: the scale
similarity model and the Smagorinsky model fro MHD case.

1 ~u s 1z _ == =
-2, =2 (81§, 8,8)+ @Y -G i) (BB, -BB)

ry = 2Y,pA% S|

b = = — =
Tij:_ZD |J|J +(U Bjui)_( iU — U, )



Computation
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Kinetic energy

For kinetic energy, larger divergence of LES results was observed with a
decrease in magnetic Reynolds number using various SGS closures. The scale-
similarity model shows the worst results, however, the other SGS closures
Increase calculation accuracy.

*The changing of Reynolds number produces qualitatively similar results, as
the initial conditions of velocity and magnetic fields are the same, and
therefore Taylor Reynolds number does not have a significant impact on the
choice of subgrid parameterizations in our computations.

*Mach number Ms exerts essential influence on results of modeling. The
divergence between DNS and LES results for kinetic energy increases with Ms.

*Generally, the Smagorinsky model and the cross-helicity model yield the best
accordance with DNS under various Mach number.



Magnetic energy
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Magnetic energy

*The differences between SGS models for magnetic energy are shown to
decrease with reducing magnetic Reynolds number and all models above
demonstrate good agreement with DNS results at small value of number Rem.

*The effect of subgrid-scale closures increases with magnetic Reynolds number
for modeling of compressible MHD turbulence, but the rate of dissipation of the
magnetic energy decreases with increasing Re_m.

*Generally, the best results are shown for the Smagorinsky, the Kolmogorov,
and the cross-helicity models for evolution of the magnetic energy.

*The deviations in results for magnetic energy decrease with increasing Ms. It is
necessary to notice, that magnetic energy reaches a stationary level more
rapidly with reducing Mach number.



Cross-helicity

0.46
0.444 % 0.44!
0.42
0.42
0.4
>
Ms=1 £ oa Ms=0.2 @ 038
% 5 0.36
(o]
S 0.38 2 oo
0.36 0.32
03
034 0.28f i
0 0 0.05 0.1 0.15
t
0.46
0.45, 0.45¢ ]
044}
0.4 03
> >
2 2
5 2 0.42
Zo3s %
Q — 041
Re m=2 ¢ Re m=20 ¢
- 0.3 0.4
0.39
0.25 0.38

‘ 0.37



Cross-helicity

For the cross-helicity, the influence of subgrid-scale parametrizations
Increases with magnetic Reynolds number.

*The scale-similarity model demonstrates the worst results. In the presence
of adequate SGS parametrization improves calculation accuracy.

*The Smagorinsky model shows the best results for the cross-helicity both for
high and for low Mach numbers.



Skewness and flathess

The departure from Gaussianity for fluid turbulence in the laboratory or in
numerical simulations is measured in terms of the skewness and flatness factors.

The flatness factor (sometimes also called kurtosis) in turbulent flows is a measure of
intermittency. The flatness is an indication of the occurrence of fluctuations far from the
mean: it is an indicator of the relative frequency of rare events. Hence the flatness
increases with increasing sparseness of the fluctuations:
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The skewness is related to the asymmetry of the probability density function of the velocity
or magnetic filed fluctuations. It is a sensitive indicator of changes in the large scale
structure.
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outcome

= applicability of LES method for studying of non-Gaussian properties of
probability density function for turbulent compressible magnetic fluid flow

= potential feasibilities of various subgrid-scale parameterizations by means of
comparison with DNS results are explored

= efficiency is demonstrated by various subgrid-scale models depends on
similarity numbers of turbulent MHD flow. Lack of dissipation in LES model
without any SGS parametrization for kinetic and magnetic energies does not
have an effect on determination of the skewness and the flatness, the case
without any subgrid modeling sometimes lies even closer to the DNS results.
This indicates that the energy pile-up at the small scales, that is characteristic for
the case without any SGS closure, does not significantly influence determination
of PDF

» among the subgrid models, the best results for studying of the flathess and the
skewness of the velocity and the magnetic field components are demonstrated
by the Smagorinsky model for MHD turbulence and the model based on cross-
helicity for MHD case.



Filtered MHD equations for
heat-conducting plasma
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Subgrid-scale terms of filtered
MHD equations for heat-
conducting plasma
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Models for SGS terms

For SGS stresses we use the Smagorinsky model for the MHD case:
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The eddy diffusivity model is used for the closure of the subgrid-scale heat flux. This eddy
diffusivity model is similar to the molecular heat flux term, but the molecular viscosity
and Prandtl number have been replaced by the dynamic eddy viscosity and the turbulent

Prandtl number: ~ ~
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The model for Jj is based on an analogy to Reynolds-averaged Navier-Stokes equations
and on the assumption that u; = U,
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Cross-helicity
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Kinetic energy spectrum

Magnetic energy spectrum

Kinetic and magnetic energy spectra.



Kinetic energy
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Kinetic energy spectrum
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outcome

* The system of the filtered MHD equations with the total energy equation using the
mass-weighted filtering procedure has been obtained. Novel subgrid-scale terms arise in
total energy equation due to the presence of energy equation.

* New subgrid-scale models for the SGS terms, appearing after filtering procedure in the
total energy equation in the presence of magnetic field, are suggested.

 Consideration of the SGS terms in the energy equation scarcely affects the kinetic and
the magnetic energy even at high Mach numbers, while for the temperature (same as for
the internal energy) the presence of SGS models in the energy equation is an important
condition for improvement of calculation accuracy of thermodynamic quantities.

» Generally, LES method using explicit mass-weighted filtering demonstrates good results
for modeling of electrically and heat conducting fluid in MHD turbulence when the
medium is weakly or moderately compressible.



Linear forcing

ldea essentially consists in adding a force proportional to the fluctuating velocity.
Linear forcing resembles a turbulence when forced with a mean velocity gradient, that
IS, a shear. This force appears as a term in the equation for fluctuating velocity that
corresponds to a production term in the equation of turbulent kinetic energy.

The equation for the fluctuating part of the velocity in a compressible MHD
turbulent flow are written as
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Here following decomposition referred to as the Reynolds decomposition is used:
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Linear forcing

In symbolic terms, derivation of turbulent kinetic energy equation can be written
as (u-NSeq)—U(NSeq.) which yie|ds:
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production of turbulent energy per unit volume per unit time resulting
from the interaction between the Reynolds stress and the mean shear.



Linear forcing

F!" = ©pu; -driving term proportional to the velocity

coefficient which is determined from a balance
of kinetic energy for a statistically stationary state:
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Polytropic plasma

Spectra of MHD turbulence



Polytropic plasma
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outcome

The theory of linear forcing is developed for study of compressible MHD
turbulence in coordinate space. The expressions of external force which
provide obtaining a statistically stationary regime of turbulence are derived.
The formulae used for the formulation of large eddy simulation approach are
obtained. The potential possibilities of LES method to reproduce physics of
flow under investigation in a stationary regime both for polytropyc and for
heat-conducting plasmas are studied.

Spectra of MHD turbulence is obtained and studied. Type of obtained
spectra is determined. Kolmogorov and Iroshnikov-Kraichnan spectra of total
energy are obtained and conditions of their occurrence are showed.

Efficiency of LES method for studying of scale-invariant properties of
compressible MHD turbulence is demonstrated.



