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Filtered MHD equations
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On the right-hand sides of equations the terms designate influence of subgrid terms
on the filtered part. To determine these terms, special turbulent parametrizations
based on large-scale values describing turbulent MHD flow must be used.

Dimensionless form of 
the equations
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Subgrid scale (SGS) or 
Subfilter-scale (SFS) terms



Smagorinsky model for MHD

Turbulent viscosity:

- large-scale strain rate tensor

Turbulent diffusivity:

- large-scale magnetic rotation tensor
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Approximating the subgrid energy dissipation with the aid of
the local resolved dissipation rate,                          and                    leads to 
the classical Smagorinsky model and its straightforward MHD extension:



Kolmogorov model for   
MHD case 
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- turbulent viscosity

- turbulent magnetic diffusivity

- isotropic term

If the grid filter cutoff lies within the inertial spectral range of the homogeneously 
turbulent system and the nonlinear exchange between resolved kinetic and 
magnetic energy is much smaller than the respective dissipation, kinetic subgrid-
energy dissipation and magnetic subgrid-energy dissipation can be assumed to 
depend only on time. Thus except a unit factor carrying the necessary 
dimensions and an explicit filter scale dependence, both functions        and      
can be absorbed by the nondimensional parameters yielding the Kolmogorov
scaling model

φγ



Cross-helicity model 

φWith regard to the mixing length framework outlined above the functions      
and     are estimated as the product of subgrid dissipation and an associated 
length scale. However, instead of the local resolved kinetic and magnetic 
energy dissipation terms, the corresponding local cross-helicity dissipation 
expressions

γ

The cross helicity is ∫ ⋅=
V
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the resolved vorticity

the electric current density



Cross-helicity model 
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The cross-helicity is related to the transfer between kinetic and magnetic
energies caused by the Lorentz force. Therefore, the cross helicity allows one
to estimate the energy exchange between large and small scales in the LES 
method:
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- turbulent viscosity

- isotropic term

- turbulent magnetic diffusivity
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Since the energetically most favorable configuration of the local velocity and magnetic field is 
V||B, any decrease of alignment of these two vectors increases locally the magnetic energy. 
The process works inversely when the local alignment increases whereby the direction of 
change is given by the sign of the local cross-helicity dissipation. The justification is based 
on the existence of the inverse magnetic helicity cascade.



Scale-similarity model for 
MHD case
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The scale-similarity model is not of the eddy-viscosity-type. It is based on
the assumption that the component of the SGS most active in the energy
transfer from large to small scales can be estimated with sufficient accuracy
from the smallest resolved scale, which can be obtained by filtering the 
subgrid-scale quantities



Mixed model for compressible 
MHD turbulence

The mixed model is a combination of two subgrid-scale closures: the scale
similarity model and the Smagorinsky model fro MHD case.
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Computation examples



Kinetic energy
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Kinetic energy 
•For kinetic energy, larger divergence of LES results was observed with a 
decrease in magnetic Reynolds number using various SGS closures. The scale-
similarity model shows the worst results, however, the other SGS closures 
increase calculation accuracy.

•The changing of Reynolds number produces qualitatively similar results, as 
the initial conditions of velocity and magnetic fields are the same, and  
therefore Taylor Reynolds number does not have a significant  impact on the 
choice of subgrid parameterizations in our computations.

•Mach number Ms exerts essential influence on results of modeling. The
divergence between DNS and LES results for kinetic energy increases with Ms. 

•Generally, the Smagorinsky model and the cross-helicity model yield the best
accordance with DNS under various Mach number.



Magnetic energy 
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Magnetic energy 

•The differences between SGS models for magnetic energy are shown to
decrease with reducing magnetic Reynolds number and all models above
demonstrate good agreement with DNS results at small value of number Rem. 

•The effect of subgrid-scale closures increases with magnetic Reynolds number
for modeling of compressible MHD turbulence, but the rate of dissipation of the
magnetic energy decreases with increasing Re_m. 

•Generally, the best results are shown for the Smagorinsky, the Kolmogorov, 
and the cross-helicity models for evolution of the magnetic energy.

•The deviations in results for magnetic energy decrease with increasing Ms. It is
necessary to notice, that magnetic energy reaches a stationary level more
rapidly with reducing Mach number.



Cross-helicity
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Cross-helicity

•For the cross-helicity, the influence of subgrid-scale parametrizations
increases with magnetic Reynolds number.

•The scale-similarity model demonstrates the worst results. In the presence
of adequate SGS parametrization improves calculation accuracy.

•The Smagorinsky model shows the best results for the cross-helicity both for
high and for low Mach numbers. 
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The departure from Gaussianity for fluid turbulence in the laboratory or in 
numerical simulations is measured in terms of the skewness and flatness factors.

The flatness factor (sometimes also called kurtosis) in turbulent flows is a measure of 
intermittency. The flatness is an indication of the occurrence of fluctuations far from the 
mean: it is an indicator of the relative frequency of rare events. Hence the flatness 
increases with increasing sparseness of the fluctuations:

The skewness is  related to the asymmetry of the probability density function of the velocity 
or magnetic filed fluctuations. It is a sensitive indicator of changes in the large scale 
structure.

SkewnessSkewness and flatnessand flatness



Time evolution of skewness and 
flatness of velocity and magnetic 
field components for the case 
Re = 100, Re_l = 25,
Re_m = 10.0, M_s = 0.6. 

0   0.04 0.08 0.12 0.16 0.2 
0    

0.01 

0.02 

0.03 

0.04 

0.05 

t

S
u x

0   0.04 0.08 0.12 0.16 0.2 
0    

0.01 

0.02 

0.03 

0.04 

0.05 

t

S
b x

0   0.04 0.08 0.12 0.16 0.2 
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

t

S
u y

0   0.04 0.08 0.12 0.16 0.2 
0    

0.01 

0.02 

0.03 

0.04 

0.05 

t

S
b y

0   0.04 0.08 0.12 0.16 0.2 
−0.05

0

0.05

0.1

t

S
u z

0   0.04 0.08 0.12 0.16 0.2 
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

t

S
b z



outcome
applicability of LES method for studying of non-Gaussian properties of 

probability density function for turbulent compressible magnetic fluid flow

potential feasibilities of various subgrid-scale parameterizations by means of 
comparison with DNS results are explored

efficiency is demonstrated by various subgrid-scale models depends on 
similarity numbers of turbulent MHD flow. Lack of dissipation in LES model 
without any SGS parametrization for kinetic and magnetic energies does not 
have an effect on determination of the skewness and the flatness, the case 
without any subgrid modeling sometimes lies even closer to the DNS results. 
This indicates that the energy pile-up at the small scales, that is characteristic for 
the case without any SGS closure, does not significantly influence determination 
of PDF

among the subgrid models, the best results for studying of the flatness and the 
skewness of the velocity and the magnetic field components are demonstrated 
by the Smagorinsky model for MHD turbulence and the model based on cross-
helicity for MHD case.



Filtered MHD equations for 
heat-conducting plasma
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Subgrid-scale terms of filtered 
MHD equations for heat-

conducting plasma 
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- SGS stresses

- magnetic SGS stresses

- SGS heat flux

- SGS turbulent diffusion

- SGS magnetic energy flux

- SGS energy of the
interaction between the 
magnetic tension and the  
velocity



Models for SGS terms
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For SGS stresses we use the Smagorinsky model for the MHD case:

The eddy diffusivity model is used for the closure of the subgrid-scale heat flux. This eddy
diffusivity model is similar to the molecular heat flux term, but the molecular viscosity
and Prandtl number have been replaced by the dynamic eddy viscosity and the turbulent
Prandtl number:
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M=0.38

Time dynamics of kinetic 
and magnetic energy



M=0.38

Time evolution of cross-helicity and temperature



M=0.38

Kinetic and magnetic energy spectra.



M=0.70

Time dynamics of kinetic and magnetic energy



M=0.70

Kinetic and magnetic energy spectra.



outcome
• The system of the filtered MHD equations with the total energy equation using the
mass-weighted filtering procedure has been obtained. Novel subgrid-scale terms arise in
total energy equation due to the presence of energy equation. 

• New subgrid-scale models for the SGS terms, appearing after filtering procedure in the 
total energy equation in the presence of magnetic field, are suggested. 

• Consideration of the SGS terms in the energy equation scarcely affects the kinetic and 
the magnetic energy even at high Mach numbers, while for the temperature (same as for 
the internal energy) the presence of SGS models in the energy equation is an important 
condition for improvement of calculation accuracy of thermodynamic quantities. 

• Generally, LES method using explicit mass-weighted filtering demonstrates good results 
for modeling of electrically and heat conducting fluid in MHD turbulence when the 
medium is weakly or moderately compressible. 



Linear forcing

Here following decomposition referred to as the Reynolds decomposition is used:

The equation for the fluctuating part of the velocity in a compressible MHD 
turbulent flow are written as

Idea essentially consists in adding a force proportional to the fluctuating velocity. 
Linear forcing resembles a turbulence when forced with a mean velocity gradient, that 
is, a shear. This force appears as a term in the equation for fluctuating velocity that 
corresponds to a production term in the equation of turbulent kinetic energy.



Linear forcing

In symbolic terms, derivation of turbulent kinetic energy equation can be written 
as                                            which   yields:

where - turbulent magnetic tensor

production of turbulent energy per unit volume per unit time resulting 
from the interaction between the Reynolds stress and the mean shear. 



Linear forcing

coefficient which is determined from a balance
of kinetic energy for a statistically stationary state:

- driving term proportional to the velocity

- mean dissipation rate of turbulent energy into heat



Polytropic plasma -1

Time evolution of U_rms and B_rms



Polytropic plasma 

Spectra of MHD turbulence



Polytropic plasma 

Time dynamics of rms velocity, rms magnetic field and mean density.
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outcome

The theory of linear forcing is developed for study of compressible MHD 
turbulence  in coordinate space. The expressions of external force which 
provide obtaining a statistically stationary regime of turbulence are derived. 
The formulae used for the formulation of large eddy simulation approach are 
obtained. The potential possibilities of LES method to reproduce physics of 
flow under investigation in a stationary regime both for polytropyc and for 
heat-conducting plasmas are studied.

Spectra of MHD turbulence is obtained and studied. Type of obtained 
spectra is determined. Kolmogorov and Iroshnikov-Kraichnan spectra of total 
energy are obtained and conditions of their occurrence are showed. 

Efficiency of LES method for studying of scale-invariant properties of 
compressible MHD turbulence is demonstrated. 


