

LES Simulations of Quiet Sun Magnetism

Matthias Rempel HAO/NCAR

NSF

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Quiet sun magnetism

- Origin and spatial distribution of quiet sun field
 - Small scale dynamo?
 - Remnant field from large scale dynamo?
- Vögler, Schüssler (2007)
 - Upper most few Mm of CZ act as dynamo despite small recirculation
 - Field strength falls short by a factor of 2-3 compared to Hinode observations (Danilovic et al. 2010)
- Approach here:
 - Only numerical diffusivities based on monotonicity constraints
 - Does this make sense for small scale dynamo simulation?
 - Robustness of results:
 - Resolution, "numerical Pm"
 - Comparison with physical η and real sun
 - Bottom boundary conditions
 - Open (try to mimic the deep CZ):
 - saturation field strength depends on assumptions in inflow regions
 - <|Bz|> ~ 30 … 80 G
 - Observations (Hinode) best reproduced for <|Bz|> ~ 60 G
 - Closed (better defined dynamo problem, but not the Sun):

Friday, May 24, 13

Numerical diffusivities

- Starting point: 4th order scheme (RK4 + centered 5 point stencil in space, MURaM radiative MHD code)
 - Stable for linear waves, need additional diffusivity for discontinuities
- Diffusive flux required for shock capturing:

$$F_{i+1/2} = -\frac{1}{2}c(u_{i+1} - u_i) \quad \Rightarrow \quad D = \frac{1}{2}c\Delta x \quad \Rightarrow \quad t_{diff} = \frac{1}{2}\frac{(\Delta x)^2}{D} = \frac{\Delta x}{c} = t_{adv}$$

- High order scheme to reduce diffusivity in "smooth" regions:
 - Piecewise linear reconstruction of solution using a limited slope (i.e. disable reconstruction if there is a monotonicity change

 $S_i = \text{Slope_Limiter}(u_{i+1} - u_i, u_i - u_{i-1})$

- Extrapolated values at cell interfaces: $u_i = u_i + 0.5 S_i$

$$u_r = u_{i+1} - 0.5 \ S_{i+1}$$

- Jumps at interfaces: $\Delta u_{CC} = u_{i+1} - u_i$

$$\Delta u_{EX} = u_r - u_l$$

LES of MHD

Numerical diffusivities

• 2nd order diffusive flux (e.g. 2nd order TVD Lax-Friedrichs):

 $F_{i+1/2} = -\frac{1}{2} c \Delta u_{EX}$

• Further reduction of diffusivity

 $F_{i+1/2} = -\frac{1}{2} c \Phi\left(\frac{\Delta u_{EX}}{\Delta u_{CC}}\right) \Delta u_{EX}$ $\Phi(x < 0) = 0 \text{ (no anti-diffusion)}$ $\Phi(x = 1) = 1 \text{ (keep max schock diffusivity)}$ $\Phi \text{ monotonically increasing}$

- Additional ingredients:
 - c=v+v_{alfven} (sound speed not required: low diffusivity for small Ma)

"Sun" at 4 km resolution

Intensity

Bz(tau=1)

|B|

Inclination horiz./vert.

- Simulation domain: 6.144 x 6.144 x 3.072 Mm³
- Grid size: 1536 x 1536 x 768

HAO

LES of MHD

May 21-23, 2013

"Sun" at 4 km resolution

Bz(tau=1)

Inclination horiz./vert.

- Simulation domain: 6.144 x 6.144 x 3.072 Mm³
 - Grid size: 1536 x 1536 x 768

Friday, May 24, 13

LES of MHD

May 21-23, 2013

"Sun" at 4 km resolution

Intensity

Bz(tau=1)

|B|

Inclination horiz./vert.

- Simulation domain: 6.144 x 6.144 x 3.072 Mm³
- Grid size: 1536 x 1536 x 768

HAO

LES of MHD

May 21-23, 2013

Kinematic to saturated regime

Friday, May 24, 13

LES of MHD

May 21-23, 2013

Kinematic to saturated regime

HAO

LES of MHD

May 21-23, 2013

Kinematic to saturated regime

Friday, May 24, 13

LES of MHD

May 21-23, 2013

Kinematic to saturated regime: Transfer functions

- Kinematic phase:
 - Energy exchange at $L \sim 6-8 \Delta x$
 - Depends on resolution
- Saturated phase:
 - Energy exchange at L ~ 250 km (downflow lanes)
 - Does not depend on resolution

LES of MHD

Resolution dependence 32 ... 2 km

- Converged results using LES approach
 - No explicit viscosity or magnetic resistivity
 - Changing resolution by a factor of 16!
 - Domain sizes from 192x192x96 to 3072x3072x1536
- Does it converge toward the correct solution (computed with realistic viscosity, resistivity)?
 - Implicit magnetic Prandtl number ~1
 - Sun: Pm~10⁻⁵

LES of MHD

Physical vs. numerical diffusivity, magnetic Pm (experiments with closed bnd)

- Solutions with physical η similar to pure numerical diffusivity
 - Similar transfer functions, but
 - reaches only 25% of magnetic energy ($\eta = 10^{10} \text{ cm}^2/\text{sec}$)
- Moderate dependence on "numerical Pm"

LES of MHD

From granulation to supergranulation

- Domains from 6x6x3 Mm³ to 100x100x20 Mm³
- Photospheric power spectrum (E_{mag})
 Flat on scales larger than granulation

 $E_{mag} \sim 2 E_{kin}$ on scales smaller than 100 km

Friday, May 24, 13

Comparison with Hinode

- Forward modeling:
 - Simulation with non-grey RT
 - Stokes profiles for Fe 6301/6302
 - Convolution with PSF of Hinode
 - Addition of noise
 - Analysis identical to observed data

Conclusions

• LES Small scale dynamo

- Used modified slope-limited diffusion scheme
 - No "physcial" SGS, monotonicity constraints on solution
- Results converged with respect to resolution (for saturated regime, kinematic growth rate strongly resolution dependent)
- No substantial difference to case with physical resistivity, except for saturation level
- No strong dependence on "numerical Pm", although explored here only moderate variation from 1 to 0.25
- Quiet Sun magnetic field
 - Observed flux density indicates solar convection zone close to equipartition in a few Mm depth
 - Saturated dynamo operates on scale of downflow lanes (250 km), 3 orders of magnitude away from dissipation scale
 - Might be the reason why LES is OK for saturated case
 - Magnetic powerspectrum flat for L > 1 Mm, super-equipartition (factor ~ 2) for L < 100 km
 - Agrees well with observations (only constraint on scales > 200 km)

Friday, May 24, 13

LES of MHD

May 21-23, 2013

Field strength of quiet sun?

- Depends on bottom boundary condition
 - B=0, B vertical, B isotropic ...?
- Upper limit:
 - B_{rms} should not increase faster with depth than B_{eq}
- Lower Limit:

- Field strength range: <|Bz|> ~30-80 G
 - Best match with Hinode data <|Bz|>~60 G (Danilovic & Rempel in prep.)

LES of MHD