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Quiet sun magnetism

« Origin and spatial distribution of quiet sun field
— Small scale dynamo?
— Remnant field from large scale dynamo?

« Vogler, Schussler (2007)
— Upper most few Mm of CZ act as dynamo despite small recirculation
— Field strength falls short by a factor of 2-3 compared to Hinode
observations (Danilovic et al. 2010)
* Approach here:
— Only numerical diffusivities based on monotonicity constraints
» Does this make sense for small scale dynamo simulation?

* Robustness of results:
— Resolution, “numerical Pm”
— Comparison with physical n and real sun
— Bottom boundary conditions
* Open (try to mimic the deep C2):
— saturation field strength depends on assumptions in inflow regions

- <|Bz|>~30...80G
— Observations (Hinode) best reproduced for <|Bz|> ~ 60 G

» Closed (better defined dynamo problem, but not the Sun):
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Numerical diffusivities

« Starting point: 4t order scheme (RK4 + centered 5 point stencil in
space, MURaM radiative MHD code)

« Stable for linear waves, need additional diffusivity for discontinuities

 Diffusive flux required for shock capturing:
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« High order scheme to reduce diffusivity in “smooth” regions:

 Piecewise linear reconstruction of solution using a limited slope (i.e. disable
reconstruction if there is a monotonicity change
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Numerical diffusivities

« 2nd order diffusive flux (e.g. 2" order TVD Lax-Friedrichs):
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« Additional ingredients:
e C=V+V (sound speed not required: low diffusivity for small Ma)
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“Sun” at 4 km resolution

Intensity Bz(tau=1)
1B Inclination
horiz./vert.

e Simulation domain: 6.144 x 6.144 x 3.072 Mm3
 Grid size: 1536 x 1536 x 768
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Simulation domain: 6.144 x 6.144 x 3.072 Mm3
Grid size: 1536 x 1536 x 768
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“Sun” at 4 km resolution

Intensity Bz(tau=1)
1B Inclination
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Kinematic to saturated regime
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Kinematic to saturated regime
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Kinematic to saturated regime
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Kinematic to saturated regime:
Transfer functions
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* Kinematic phase:

— Energy exchange at L ~ 6-8 Ax
— Depends on resolution

« Saturated phase:
— Energy exchange at L ~ 250 km (downflow lanes)

H — Does not depend on resolution
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Emcg ’ Ekin [erg Cm_z]

Resolution dependence 32 ... 2 km
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Converged results using LES approach
— No explicit viscosity or magnetic resistivity
— Changing resolution by a factor of 16!

pdf(I1BI)

— Domain sizes from 192x192x96 to 3072x3072x1536
Does it converge toward the correct solution (computed with realistic viscosity, resistivity)?

— Implicit magnetic Prandtl number ~1
— Sun: Pm~10-
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Physical vs. numerical diffusivity, magnetic Pm
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« Solutions with physical n similar to pure numerical diffusivity
— Similar transfer functions, but
— reaches only 25% of magnetic energy (n = 1019 cm2/sec)

 Moderate dependence on “numerical Pm”
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From granulation to supergranulation
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* Domains from 6x6x3 Mm3 to 100x100x20 Mm3
. Photospheric power spectrum (Emag)

Flat on scales larger than granulation
E ..~ 2E,, onscales smaller than 100 km

mag
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Comparison with Hinode
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* Forward modeling:
— Simulation with non-grey RT
— Stokes profiles for Fe 6301/6302
— Convolution with PSF of Hinode
— Addition of noise
— Analysis identical to observed data
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Conclusions

 LES Small scale dynamo
— Used modified slope-limited diffusion scheme
* No “physcial” SGS, monotonicity constraints on solution

— Results converged with respect to resolution (for saturated regime,
kinematic growth rate strongly resolution dependent)

— No substantial difference to case with physical resistivity, except for
saturation level

— No strong dependence on “numerical Pm”, although explored here
only moderate variation from 1 to 0.25
* Quiet Sun magnetic field

— Observed flux density indicates solar convection zone close to
equipartition in a few Mm depth

— Saturated dynamo operates on scale of downflow lanes (250 km), 3
orders of magnitude away from dissipation scale

« Might be the reason why LES is OK for saturated case

— Magnetic powerspectrum flat for L > 1 Mm, super-equipartition (factor
~2) for L< 100 km

— Agrees well with observations (only constraint on scales > 200 km)
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Field strength of quiet sun?

* Depends on bottom boundary condition
— B=0, B vertical, B isotropic ...?
* Upper limit:
— B, should not increase faster with depth than Beq

e Lower Limit;

— Afc)so%me B=IO in all inlflowlreqilons |
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« Field strength range: <|Bz|> ~30-80 G

— Best match with Hinode data <|Bz|>~60 G
(Danilovic & Rempel in prep.)
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