Session 2: **Anisotropy** and Kinetic Effects (Tues, May 21, 9-10:30 am and 11am-12:30 pm)

Anisotropy in ideal MHD turbulence due to rotation and/or a mean magnetic field

John V. Shebalin, NASA JSC

Overview

- MHD Turbulence is inherently anisotropic
- MHD and HD turbulence fundamentally differ
- Real MHD turbulence ~ inertial & small scales
- Ideal MHD turbulence provides some guidance
 - \rightarrow Limit of hyper-dissipation as $n \rightarrow \infty$
 - \rightarrow Quasi-equilibrium theory for large-scales
 - → Anisotropy through broken symmetry
 - $\rightarrow \Omega_{o}$ or \mathbf{B}_{o} give further structure

Basic Equations

$$\begin{aligned} \frac{\partial \boldsymbol{\omega}}{\partial t} &= \nabla \times \left[\mathbf{u} \times (\boldsymbol{\omega} + 2\boldsymbol{\Omega}_{\mathrm{o}}) + \mathbf{j} \times (\mathbf{b} + \mathbf{B}_{\mathrm{o}}) \right] + \nu \nabla^{2} \boldsymbol{\omega}, \\ \frac{\partial \mathbf{b}}{\partial t} &= \nabla \times \left[\mathbf{u} \times (\mathbf{b} + \mathbf{B}_{\mathrm{o}}) \right] + \eta \nabla^{2} \mathbf{b}. \end{aligned}$$

 $\nabla \cdot \mathbf{u} = \nabla \cdot \mathbf{b} = 0, \quad \boldsymbol{\omega} = \nabla \times \mathbf{u}, \quad \mathbf{j} = \nabla \times \mathbf{b}.$

 $\mathbf{\Omega}_{\rm o} = \Omega_{\rm o} \hat{\mathbf{z}}$ and $\mathbf{B}_{\rm o} = B_{\rm o} \hat{\mathbf{x}}$

Five Cases of Ideal MHD Turbulence $(v = \eta = 0)$

Case	Mean field	Rotation	Invariants
Ι	$B_{\rm o}=0$	$\Omega_{ m o}\!=\!0$	E, H_C, H_M
II	$B_{ m o} eq 0$	$oldsymbol{\Omega}_{\mathrm{o}}\!=\!oldsymbol{0}$	E, H_C
III	$B_{\rm o}=0$	$oldsymbol{\Omega}_{\mathrm{o}}\! eq\!0$	E, H_M
IV	$B_{\rm o} \neq 0$	$\boldsymbol{\Omega}_{\mathrm{o}} = \sigma \boldsymbol{B}_{\mathrm{o}}$	E, H_P
V	$B_{ m o} eq 0$	$oldsymbol{\Omega}_{ m o} imes oldsymbol{B}_{ m o} eq oldsymbol{0}$	E

 $H_P = H_C - \sigma H_M$, where σ is defined by the relation $\Omega_o = \sigma B_o$.

Fourier Transform

Fourier transformation from x-space to k-space and back.

$$\begin{bmatrix} \mathbf{u}(\mathbf{x},t) \\ \mathbf{b}(\mathbf{x},t) \end{bmatrix} = \frac{1}{N^{3/2}} \sum_{\mathbf{k}} \begin{bmatrix} \tilde{\mathbf{u}}(\mathbf{k},t) \\ \tilde{\mathbf{b}}(\mathbf{k},t) \end{bmatrix} e^{i\mathbf{k}\cdot\mathbf{x}},$$

$$\begin{bmatrix} \tilde{\mathbf{u}}(\mathbf{k},t) \\ \tilde{\mathbf{b}}(\mathbf{k},t) \end{bmatrix} = \frac{1}{N^{3/2}} \sum_{\mathbf{x}} \begin{bmatrix} \mathbf{u}(\mathbf{x},t) \\ \mathbf{b}(\mathbf{x},t) \end{bmatrix} e^{-i\mathbf{k}\cdot\mathbf{x}}.$$

$$\tilde{\mathbf{u}}(\mathbf{k}) = \tilde{u}_1(\mathbf{k},t) \hat{\mathbf{e}}_1(\mathbf{k}) + \tilde{u}_2(\mathbf{k},t) \hat{\mathbf{e}}_2(\mathbf{k}),$$

$$\tilde{\mathbf{b}}(\mathbf{k}) = \tilde{b}_1(\mathbf{k},t) \hat{\mathbf{e}}_1(\mathbf{k}) + \tilde{b}_2(\mathbf{k},t) \hat{\mathbf{e}}_2(\mathbf{k}).$$

Statistical analysis done on Fourier modes in **k**-space. Numerical solution by Fourier spectral transform method.

Statistical Mechanics of Ideal MHD Turbulence (Frisch, et al., *JFM*, 1975)

$$D = \frac{1}{Z} \exp(-\alpha \widehat{E} - \beta \widehat{H}_C - \gamma \widehat{H}_M)$$

$$Z = \int_{\Gamma} \exp(-\alpha \widehat{E} - \beta \widehat{H}_C - \gamma \widehat{H}_M) d\Gamma$$

Quadratic invariants

$$\widehat{E} = \frac{1}{N^3} \sum_{\mathbf{k}'} \sum_{n=1}^2 \left[|\widetilde{u}_n(\mathbf{k})|^2 + |\widetilde{b}_n(\mathbf{k})|^2 \right],$$

$$\widehat{H}_C = \frac{1}{N^3} \sum_{\mathbf{k}'} \sum_{n=1}^2 \left[\widetilde{u}_n^R(\mathbf{k}) \widetilde{b}_n^R(\mathbf{k}) + \widetilde{u}_n^I(\mathbf{k}) \widetilde{b}_n^I(\mathbf{k}) \right],$$

$$\widehat{H}_M = \frac{2}{N^3} \sum_{\mathbf{k}'} \frac{1}{k} \left[\widetilde{b}_1^R(\mathbf{k}) \widetilde{b}_2^I(\mathbf{k}) - \widetilde{b}_2^R(\mathbf{k}) \widetilde{b}_1^I(\mathbf{k}) \right].$$

Ideal MHD Modal PDF

$$D = \prod_{\mathbf{k}'} D(\mathbf{k}), \qquad D(\mathbf{k}) = Z^{-1}(\mathbf{k}) \exp[-\tilde{Y}^{\dagger}(\mathbf{k})M_k \tilde{Y}(\mathbf{k})].$$

$$\tilde{Y}(\mathbf{k}) = \begin{bmatrix} \tilde{u}_1(\mathbf{k}) \\ \tilde{u}_2(\mathbf{k}) \\ \tilde{b}_1(\mathbf{k}) \\ \tilde{b}_2(\mathbf{k}) \end{bmatrix}, \quad M_k = \begin{bmatrix} \hat{\alpha} & 0 & \hat{\beta}/2 & 0 \\ 0 & \hat{\alpha} & 0 & \hat{\beta}/2 \\ \hat{\beta}/2 & 0 & \hat{\alpha} & -\mathrm{i}\hat{\gamma}/k \\ 0 & \hat{\beta}/2 & \mathrm{i}\hat{\gamma}/k & \hat{\alpha} \end{bmatrix}$$

٠

Ideal MHD Eigenanalysis

$$\begin{split} \tilde{v}_1(\mathbf{k}) &= \widehat{\beta}_s \zeta_k^- \tilde{u}_+(\mathbf{k}) - \zeta_k^+ \tilde{b}_+(\mathbf{k}), \\ \tilde{v}_2(\mathbf{k}) &= \widehat{\beta}_s \zeta_k^- \tilde{u}_-(\mathbf{k}) + \zeta_k^+ \tilde{b}_-(\mathbf{k}), \\ \tilde{v}_3(\mathbf{k}) &= \widehat{\beta}_s \zeta_k^+ \tilde{u}_+(\mathbf{k}) + \zeta_k^- \tilde{b}_+(\mathbf{k}), \\ \tilde{v}_4(\mathbf{k}) &= -\widehat{\beta}_s \zeta_k^+ \tilde{u}_-(\mathbf{k}) + \zeta_k^- \tilde{b}_-(\mathbf{k}). \end{split}$$

$$\tilde{u}_{\pm}(\mathbf{k}) = \tilde{u}_{1}(\mathbf{k}) \pm \mathrm{i}\tilde{u}_{2}(\mathbf{k}), \qquad \tilde{b}_{\pm}(\mathbf{k}) = \tilde{b}_{1}(\mathbf{k}) \pm \mathrm{i}\tilde{b}_{2}(\mathbf{k}),$$
$$\zeta_{k}^{\pm} = \frac{1}{2}\sqrt{1 \pm \frac{\hat{\gamma}}{k\hat{\eta}_{k}}}; \qquad \hat{\eta}_{k} = \sqrt{\hat{\beta}^{2} + \frac{\hat{\gamma}^{2}}{k^{2}}}.$$

$$\widehat{\lambda}_{k}^{(1)} = \widehat{\alpha} - \frac{1}{2}(\widehat{\eta}_{k} + \widehat{\gamma}/k), \qquad \widehat{\lambda}_{k}^{(2)} = \widehat{\alpha} + \frac{1}{2}(\widehat{\eta}_{k} + \widehat{\gamma}/k),$$
$$\widehat{\lambda}_{k}^{(3)} = \widehat{\alpha} + \frac{1}{2}(\widehat{\eta}_{k} - \widehat{\gamma}/k), \qquad \widehat{\lambda}_{k}^{(4)} = \widehat{\alpha} - \frac{1}{2}(\widehat{\eta}_{k} - \widehat{\gamma}/k).$$

Ideal MHD Spectra

64³; E = 1.000, $H_C = 0.3480$, $H_M = 0.09197$; $\Delta t = 10^{-3}$; t = 0 to 200.

 $[u_n(\mathbf{k}) \text{ and } b_n(\mathbf{k}) \text{ come from a Craya decomposition of } \mathbf{u}(\mathbf{k}) \text{ and } \mathbf{b}(\mathbf{k}).]$

 $|v_4(\mathbf{k})|^2 \sim O(E)$ for $k^2 = 1$, but other $|v_n(\mathbf{k})|^2 \sim O(E/N^3)$.

Expectation: Zero-mean Random Variables

Reality: Broken Ergodicity & Symmetry

Low-*k* modes don't behave as expected.

This gives large-scale anisotropy in MHD turbulence.

Broken Ergodicity

Statistical theory tells us that $\tilde{v}_4(\hat{\mathbf{k}})$, $|\hat{\mathbf{k}}|=1$, is very large, so

$$0 \approx -\zeta_1^- \tilde{u}_+(\hat{\mathbf{k}}) - \zeta_1^+ \tilde{b}_+(\hat{\mathbf{k}}),$$

$$0 \approx -\zeta_1^- \tilde{u}_-(\hat{\mathbf{k}}) + \zeta_1^+ \tilde{b}_-(\hat{\mathbf{k}}),$$

$$0 \approx -\zeta_1^+ \tilde{u}_+(\hat{\mathbf{k}}) + \zeta_1^- \tilde{b}_+(\hat{\mathbf{k}}),$$

$$\tilde{v}_4(\hat{\mathbf{k}}) = +\zeta_1^+ \tilde{u}_-(\hat{\mathbf{k}}) + \zeta_1^- \tilde{b}_-(\hat{\mathbf{k}}).$$

 $\tilde{u}_2(\hat{\mathbf{k}}) \approx i \tilde{u}_1(\hat{\mathbf{k}}), \quad \tilde{b}_2(\hat{\mathbf{k}}) \approx i \tilde{b}_1(\hat{\mathbf{k}}), \quad \tilde{v}_4(\hat{\mathbf{k}}) \approx -\tilde{b}_1(\hat{\mathbf{k}})/\zeta_1^- \approx -\tilde{u}_1(\hat{\mathbf{k}})/\zeta_1^+.$

$$\frac{d\widetilde{v}_4(\hat{\mathbf{k}})}{dt} \cong 0 \implies \widetilde{v}_4(\hat{\mathbf{k}}) \text{ become quasistationary.}$$

Rotation: $\Omega_0 \neq \mathbf{0} \rightarrow \beta = 0$.

Recent 32³ Runs: $E_M(\mathbf{k})$ at $k^2 = 1$ $\Omega_0 = \Omega_0 \hat{\mathbf{z}}$ and $\mathbf{B}_0 = B_0 \hat{\mathbf{x}}$

At t = 0, $E_K = 0.34000$, $E_M = 0.66000$, $H_C = 0.10459$ and $H_M = 0.25071$.

Effect of Rotation

32³ Run R5-1,
$$\Omega_0 = 0$$
;
 $\alpha = 1.215331, \beta = -0.408862,$
 $\gamma = -1.180571$

32³ Run R5-4,
$$\Omega_0 = 10\hat{z};$$

 $\alpha = 1.169767, \beta = 0,$
 $\gamma = -1.169394$

Rotational Anisotropy \rightarrow Dipole Angle

Mean Magnetic Field: $\mathbf{B}_{0} \neq \mathbf{0} \rightarrow \gamma = 0$

Rotation and Mean Field Effects

32³ runs R5 to R8: t = 0 to 3000 ($\Delta t = 10^{-3}$); stationarity not yet reached. Evolution towards equilibrium of k = 1 modes \perp to \mathbf{B}_0 appears to slow down. The dipole moment (k = 1) appears to line up with $\mathbf{B}_0 \times \mathbf{\Omega}_0$, in the short-term. Fluctuations in $\theta_{D,y}$ decrease as $|\mathbf{\Omega}_0|$ increases.

Conclusions

- When B_o = 0 (e.g., geodynamo), lowest-k modes can have large energies. In this case, ideal MHD results appear to carry over to v, η > 0. Energetic, coherent structures form at the largest scales. These are **anisotropic** through broken ergodicity & symmetry. When Ω_o ≠ 0, dipole alignment occurs: further **anisotropy**.
- When B_o ≠ 0 (e.g., SW), all modes are expected to have same average energy. In this case, ideal MHD results don't carry over to ν, η > 0. Relaxation to ideal state may take a long time. Dissipation and B_o ≠ 0 lead to **anisotropy**: E(**k**_⊥) > E(**k**_{||});

also, anisotropy persists as k increases.

- Special case: $\mathbf{B}_{0} \cdot \mathbf{\Omega}_{0} \neq 0$, $\mathbf{B}_{0} \times \mathbf{\Omega}_{0} = 0$; $H_{C} (\mathbf{\Omega}_{0} / B_{0}) H_{M} =$ ideal invariant.
- Need to incorporate \mathbf{B}_{0} and $\mathbf{\Omega}_{0}$ into stat mech & LES; TBD in Session 4.