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A Survey of VMS Analysis and SGS Models
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Homogeneous, Isotropic Turbulence
VMS Spectral Method
Momentum and induction
cross correlation terms

Periodic boundary
conditions
⇒ Only nonlinear terms

Adds to stability of method

Further Explorations
Detailed turbulence
statistics

Subgrid dynamo and VMS

Helical flows

Vary Prm

The VMS-based model performs very
well. The dynamic Smagorinsky model
is overly dissipative.

The FEM solution with linear elements
using the VMS model also performs
very well.

A new, VMS-based mixed model per-
forms exceptionally well for a high
Reynolds number flow a.

aDNS data from Pouquet et al. (2010)
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Wall-Bounded Turbulence
FEM Code Drekar

(With: John Shadid, Tom Smith, Eric Cyr, and Roger Pawlowski at SNL)

Fully implicit Newton-Krylov

AMG
Highly scalable: MHD run on 128K cores

Q1, Q2 elements; edge and face elements

UQ tools; Adjoint methods for error
estimation and sensitivity studies

Channel Flow Challenges and Opportunities

Prm very far from unity (∼ O
(
10−6

)
)

Overcome with quasi-static approximation

DNS of full MHD not available

LES model convergence studies

1

Top: Velocity Isosurfaces
Bottom: Induction Isosurfaces
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Variational Multiscale (VMS) Formulation (I)
Hughes (1995)

Define optimal numerical solution: Optimal projection of U

Uh = PhU Ph → User-selected projector.

Subgrid solutions consist of “leftovers”

U
′
= U−Uh

= U− PhU

=
(
I− Ph

)
U

= P
′
U P

′
→ Fine scale projector.

Solution decomposition

U = Uh +U
′
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Variational Multiscale (VMS) Formulation (II)

Leads to two problems
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)
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Approximate solution to fine-scale problem (Bazilevs et al. (2007))
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where U
′ is given by F .
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Comments on VMS

Includes subgrid effects (U
′
)

Allows for the possibility of local inverse energy cascade

Cross stresses (Uh ⊗U
′
) well-represented

( Wang and Oberai (2010) )

Reynolds stresses (U′ ⊗U
′ ) not adequately modeled

( Wang and Oberai (2010) )
⇒ Eddy viscosity model?
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Variational Statement

Variational statement : Find U ∈ V s.t.
A (W,U) = (W,F) ∀ W ∈ V
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