HIGH REYNOLDS NUMBER LARGE EDDY SIMULATION: WHERE REAL AND VIRTUAL TURBULENCE MEET?

Peter P. Sullivan

National Center for Atmospheric Research

NCAR is sponsored by the National Science Foundation Support from Office of Naval Research

HIGH RESOLUTION GLOBAL SIMULATION Courtesy J. Hurrell and CGD/NCAR

AN ABUNDANCE OF TIME AND SPACE SCALES!

BOUNDARY-LAYER PROCESSES

Stably stratified turbulent flow just above a walnut orchard during the Canopy Horizontal Array Turbulence Study (CHATS)

Provided by Shane Mayor & Ned Patton

LidarPPI Display Version 1.7.1

PPI Mode, Transect 3, El: 0.2

SCALES OF TURBULENCE RELATIVE TO NWP SCALES

Courtesy Anton Beljaars (ECMWF)

LOW LEVEL FLIGHT IN HURRICANE ISABEL Courtesy M. Black

$$v_{max}^2 = \frac{T_s - T_o}{T_o} \frac{C_k}{C_D} (k_s^* - k)$$

Maximum azimuthal wind speed (Emanuel, 2004)

9

z (cm)

9

•

10

z (cm)

C_D Donelan etal, 2004

x (cm)

30

40

20

SPIRALS ON THE SEA

Photograph of a cyclonic spiral-eddy street off the coast of the Egyptian/Libyan border. Eddy radii are \approx 5 km, and scum convergence lines are \sim 100s m wide. The street configuration suggests a recent vortex roll-up from an unstable submesoscale front or wake. (Scully-Power, 1986), courtesy J. McWilliams.

OCEAN WEATHER SYSTEMS

Simulated vertical vorticity normalized by f illustrating the interaction between fronts, instabilities and vortices in the ocean. Courtesy J. McWilliams (UCLA)

SUMMARY OF SUBMESOSCALE TURBULENCE Courtesy Jim McWilliams (UCLA)

- Surface-intensified frontogenesis induced by mesoscale straining
- Frontal instabilites of several types
- Kinetic energy forward cascade towards turbulence dissipation

AN EXAMPLE OF AN MPAS MESH BASED ON SPHERICAL CENTROIDAL VORONOI TESSELLATIONS http://public.lanl.gov/ringler/Voronoi.html

A need for scale aware parameterizations?

What are the appropriate (LES) equations for Terra-Incognita?

TOO MANY SCALES!

GOVERNING EQUATIONS

Given incompressible Navier Stokes equations:

$$\frac{\partial u_i}{\partial t} + \frac{\partial u_i u_j}{\partial x_j} = -\frac{1}{\rho} \frac{\partial p}{\partial x_i} + \nu \frac{\partial^2 u_i}{\partial x_j^2}$$

COMMENTS ON THE FILTERED EQUATIONS AND THE SUBGRID SCALE STRESS TENSOR

$$\frac{\partial \overline{u}_{i}}{\partial t} + \frac{\partial \overline{u}_{i}\overline{u}_{j}}{\partial x_{j}} = -\frac{1}{\rho}\frac{\partial \overline{p}}{\partial x_{i}} - \frac{\partial}{\partial x_{j}}\left(\tau_{ij} - \nu\frac{\partial \overline{u}_{i}}{\partial x_{j}}\right)
\tau_{ij} = \overline{u_{i}u_{j}} - \overline{u}_{i}\overline{u}_{j}$$

- The filtered equations are generally applicable in the LES and mesoscale limits and also in Terra-Incognita [Lilly(1967)]
- The filtered equations contain two parameters, molecular viscous Reynolds number and the SGS stress tensor T_{ij}
- T_{ij} is unknown! It needs to be expressed in terms of known resolved fields \overline{u}_i
- T_{ij} controls how the flow transitions from mesoscale limit \iff LES limit

RESOLVED FLOW IN MESOSCALE LIMIT

Simple eddy viscosity closure (model for deviatoric stress)

$$\tau_{ij} \sim K\left(\frac{\partial \overline{u}_i}{\partial x_j} + \frac{\partial \overline{u}_j}{\partial x_i}\right), \quad K = e^{1/2}l$$

In mesoscale limit: $L_{turb} < \triangle_f$

RESOLVED FLOW IN LES LIMIT

Simple eddy viscosity closure (model for deviatoric stress)

$$\tau_{ij} \sim K\left(\frac{\partial \overline{u}_i}{\partial x_j} + \frac{\partial \overline{u}_j}{\partial x_i}\right), \quad K = e^{1/2}l$$

In LES limit: $\triangle_f < L_{turb}$

Suggested behavior of the length scale ℓ of the unresolved turbulence as function of Δ_f for a K-model

HOW DOES ENERGY FLOW BETWEEN RESOLVED AND SGS FIELDS?

HOW DOES ENERGY FLOW BETWEEN RESOLVED AND SGS FIELDS?

• Need to build energy transport equations:

Resolved energy
$$\overline{u}_i \frac{\partial \overline{u}_i}{\partial t} = \dots - \overline{u}_i \frac{\partial \tau_{ij}}{\partial x_j}$$

$$= \dots \tau_{ij} \frac{1}{2} \left(\frac{\partial \overline{u}_i}{\partial x_j} + \frac{\partial \overline{u}_j}{\partial x_i} \right)$$

$$= \dots \tau_{ij} S_{ij}$$
Energy transfer term
SGS energy $\overline{u_i \frac{\partial u_i}{\partial t}} - \overline{u}_i \frac{\partial \overline{u}_i}{\partial t} = \dots - \tau_{ij} S_{ij} - \epsilon$
Molecular dissipation

DO HIGH-Re ROUGH-WALL LES STATISTICS CONVERGE WITH MESH REFINEMENT?

8 am

Local time

Noon

Courtesy Shane Mayor

 $Re_{\mathcal{L}} = \mathcal{UL}/\nu = 10^8$

LES EQUATIONS FOR DRY ATMOSPHERIC PBL

Subgrid-scale momentum and scalar fluxes

$$egin{array}{rcl} {f T}&=&\overline{u_i\,u_j}\,-\,\overline{u_i}\,\overline{u_j}\ {f B}&=&\overline{u_i\,b}\,-\,\overline{u_i}\,\overline{b} \end{array}$$

Incompressible Boussinesq flow

$$\nabla \cdot \overline{\mathbf{u}} = 0 \implies \nabla^2 \pi = s$$

DO LES STATISTICS CONVERGE WITH MESH REFINEMENT?

FREE CONVECTION 512³ W-FIELD

LES OF CONVECTIVE PBL, 4096 CPUS, 1024³ GRIDPOINTS

DUST DEVILS in TALAMAKAN DESERT OF CHINA Courtesy of Don Lenschow NCAR

DO LES STATISTICS CONVERGE WITH MESH REFINEMENT?

PBL HEIGHT z_i FOR VARYING MESHES

Entrainment rate $w_e = dz_i/dt$ decreases with increasing mesh resolution

IMPACT OF GRID RESOLUTION ON SKEWNESS

Can we use targeted observations to provide insight as to the nature of SGS motions in high Re PBLs?

HIGH REYNOLDS NUMBER OBSERVATIONS AND LES

• SINGLE-POINT MEASUREMENTS

- Cannot be used directly to improve LES

MULTI-POINT MEASUREMENTS

- Span a range of filter widths, $e.g., \mathcal{O}(m)$ to $\mathcal{O}(100m)$
- Ideally 3-D, time varying "volume" of turbulence and scalars in canonical flows with shear, stratification, near boundaries, ...
- Horizontal Array Turbulence Study field campaigns, HATS (2000), OHATS (2004), CHATS (2007), AHATS (2008)

HATS CONFIGURATIONS

 $\sim 36 \ cases$ -1.2 < z/L < 1.6 $0.15 < \Lambda_w/\Delta_f < 15$

RATIONALE FOR EXPERIMENTAL DESIGN

$$U_i = \overline{U_i} + u_i \equiv \int U(x'_j) G(x_i, x'_j) dx'_j + u_i$$

• Allows construction of SFS fluxes:

$$\mathcal{T}_{ij} = \overline{U_i U_j} - \overline{U_i} \ \overline{U_j}$$

- Allows measurement of resolved gradients $\partial \overline{U_i}/\partial x$, $\partial \overline{U_i}/\partial y$ and $\partial \overline{U_i}/\partial z$
- Allows expansion of SFS fluxes T_{ij} into Leonard, Cross, and Reynolds terms which requires *double* spatial filtering, *e.g.*, $\overline{\overline{U_i}u_j}$

AN EXAMPLE OF LATERAL (Y) FILTERING

AN EXAMPLE OF LATERAL (Y) FILTERING

AN EXAMPLE OF LATERAL (Y) FILTERING

SPECTRAL PEAK AND FILTER CUTOFF WAVENUMBERS

SFS VELOCITY VARIANCES

RATE EQUATIONS FOR SUBGRID DEVIATORIC STRESS

• What are the parent equations for the Smagorinsky model?

RATE EQUATIONS FOR SUBGRID DEVIATORIC STRESS

• What are the parent equations for the Smagorinsky model?

Lilly (1967), Deardorff (1973), Wyngaard (2004), Hatlee & Wyngaard (2007)
 Germano (1992)

$$\frac{D\tau_{ij}}{Dt} = \frac{2}{3}e\left(\frac{\partial\overline{u}_i}{\partial x_j} + \frac{\partial\overline{u}_j}{\partial x_i}\right) \qquad \text{Isotropic production} \\
- \left[\tau_{ik}\frac{\partial\overline{u}_j}{\partial x_k} + \tau_{jk}\frac{\partial\overline{u}_i}{\partial x_k} - \frac{1}{3}\delta_{ij}\tau_{kl}\left(\frac{\partial\overline{u}_k}{\partial x_l} + \frac{\partial\overline{u}_l}{\partial x_k}\right)\right] \\
- \frac{1}{\rho}\left[p\left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i}\right) - \overline{p}\left(\frac{\partial\overline{u}_i}{\partial x_j} + \frac{\partial\overline{u}_j}{\partial x_i}\right)\right] \\
+ \text{ transport + buoyancy production}$$

Pressure destruction

Anisotropic deviatoric production

RATE EQUATIONS FOR SUBGRID DEVIATORIC STRESS

• What are the parent equations for the Smagorinsky model?

- Lilly (1967), Deardorff (1973), Wyngaard (2004), Hatlee & Wyngaard (2007)

$$\frac{D\tau_{ij}}{Dt}^{0} = \frac{2}{3}e\left(\frac{\partial\overline{u}_{i}}{\partial x_{j}} + \frac{\partial\overline{u}_{j}}{\partial x_{i}}\right) \\
- \left[\tau_{ik}\frac{\partial\overline{u}_{j}}{\partial x_{k}} + \frac{\partial\overline{u}_{i}}{\tau_{jk}}\frac{1}{\partial x_{k}} - \frac{1}{3}\delta_{ij}\tau_{kl}\left(\frac{\partial\overline{u}_{k}}{\partial x_{l}} + \frac{\partial\overline{u}_{l}}{\partial x_{k}}\right)\right]^{0} \\
- \frac{1}{\rho}\left[p\left(\frac{\partial u_{i}}{\partial x_{j}} + \frac{\partial u_{j}}{\partial x_{i}}\right) - \overline{p}\left(\frac{\partial\overline{u}_{i}}{\partial x_{j}} + \frac{\partial\overline{u}_{j}}{\partial x_{i}}\right)\right] \quad \text{Rotta model} \\
+ \text{transport} + \text{buoyancy production}$$

Time scale

 $T = c \frac{\Delta_f}{\sqrt{e}}$

$$rac{ au_{ij}}{T} \;=\; rac{2}{3} e \left(rac{\partial \overline{u}_i}{\partial x_j} \;+\; rac{\partial \overline{u}_j}{\partial x_i}
ight)$$

PRODUCTION OF SUBFILTER SCALE FLUX τ_{11}

PRODUCTION OF SUBFILTER SCALE FLUX τ_{13}

Decomposition of SFS Production into Forwardscatter and Backscatter

$$P = -\mathcal{T}_{ij}S_{ij}$$
 $P_f = (P + |P|)/2$ $P_b = (P - |P|)/2$

Decomposition of SFS Production into Forwardscatter and Backscatter

 $P = -\mathcal{T}_{ij}S_{ij}$ $P_f = (P + |P|)/2$ $P_b = (P - |P|)/2$

SUMMARY

- Atmospheric and oceanic boundary-layer dynamics are unique compared to flat-wall boundary layers because of surface waves
 - Winds, currents, drag, variances, dissipation, entrainment, ...
- Carefully crafted high Re LES neatly exposes the interactions between winds-waves, waves-currents
- LES solutions for means and second-order moments converge with mesh refinement provided $z_i/C_s \triangle_f > 300$ (for daytime convective BL)
 - Solutions exhibit approximate Reynolds-number similarity
 - Entrainment rate decreases with increasing mesh resolution
 - Vertical velocity skewness is an indicator of mesh sensitivity
- Measurements of subgrid-scale variables show SGS (eddy viscosity) parameterizations used in LES are inadequate when the ratio $\Lambda/\triangle_f \sim \mathcal{O}(1)$ or less
 - Anisotropic production of scalar and momentum flux in surface layers is important
- Yes! LES is exceedingly useful, but can be improved

AN LES PROPOSAL TO STUDY TERRA-INCOGNITA DYNAMICS

- Run big with conventional LES! Processor counts $\sim \mathcal{O}(10^4)$ or more
- Design LES with a minimum (tolerable) resolution say $L_{turb}/\triangle_f \sim 20$ then choose N_{points} large to capture key large-scale processes
- To be interesting N_{points} needs to be large enough to capture $L_{turb}/\triangle_f = 1$
- A-prior filtering of LES databases at Terra-Incognita resolutions, say $L_{turb}/\delta_f = [10, 1, 0.5, 0.1]$ where $\delta_f > \triangle_f$
- Others are doing this in the atmosphere and ocean, *e.g.*, [Moeng and Arakawa(2012)], Baylor Fox-Kemper *et al.*(2012) on Yellowstone
- Dissect the Horizontal Array Turbulence Studies carried out in the atmospheric surface layer