Rapidly Rotating Convection: When Geometry Matters

- The problem:
 - Rotationally constrained: $E = \frac{\nu}{\Omega d^2} \ll 1$, $Ro = \frac{U}{\Omega d} \ll 1$ Highly turbulent: $Re = \frac{Ud}{U} \gg 1$

 - Unstably stratified

Rapidly Rotating Convection: When Geometry Matters

- The problem:
 - Rotationally constrained: $E = \frac{\nu}{\Omega d^2} \ll 1$, $Ro = \frac{U}{\Omega d} \ll 1$ Highly turbulent: $Re = \frac{Ud}{U} \gg 1$

 - Unstably stratified

Earth's core:

 $Ro \sim 10^{-7}, E \sim 10^{-15}, Re \sim 10^{8}$

Rapidly Rotating Convection: When Geometry Matters

• The problem:

• Rotationally constrained: $E = \frac{\nu}{\Omega d^2} \ll 1$, $Ro = \frac{U}{\Omega d} \ll 1$ • Highly turbulent: $Re = \frac{Ud}{U} \gg 1$

- Unstably stratified

Earth's core:

 $Ro \sim 10^{-7}, E \sim 10^{-15}, Re \sim 10^{8}$ MHD environment, but don't understand convection yet

Spherical vs. Cartesian

E~1e-4 (Krista Soderlund)

- Traveling Rossby waves
- Scalings: $k_{\phi} \sim E^{-1/3} \ k_R \sim E^{-2/9} \ k_Z \sim \mathcal{O}(1)$

E<<1 (Calkins et al., 2013)

- Stationary for Pr > I
- Scalings: $k_{\perp} \sim E^{-1/3} \ k_Z \sim \mathcal{O}(1)$

Spherical vs. Cartesian

E~1e-4 (Krista Soderlund)

E<<1 (Calkins et al., 2013)

• Traveling Rossby waves

- Stationary for Pr > I
- Scalings: $k_{\phi} \sim E^{-1/3} \ k_R \sim E^{-2/9} \ k_Z \sim \mathcal{O}(1)$

• Scalings: $k_{\perp} \sim E^{-1/3} \ k_Z \sim \mathcal{O}(1)$

Small scales directly influenced by geometry! Parameterization?

Small Scale Model for Sphere: The Annulus

- Annulus inscribed within sphere
- Captures "local" convective structures
- Theory/asymptotics allows for identification of small-scales

Small Scale Model for Sphere: The Annulus

- Annulus inscribed within sphere
- Captures "local" convective structures
- Theory/asymptotics allows for identification of small-scales

- What to do next?
 - Couple to large-scale models
 - Prandtl number effects