``The role of helicity^{*} in 3D turbulence is, in our opinion, still somewhat mysterious'' *Chen, Chen & Eyink, 2003*

* (kinetic)

Modeling of helical flows

$$\widetilde{\nu}^{>}(k|k_{c},t) = \int \int_{\Delta^{>}} \frac{\theta_{kpq} S_{E_{4}}(k,p,q,t)}{2k^{2} H(k,t)} dp dq$$

$$= \int \int_{\Delta^{>}} \theta_{kpq} \frac{1}{2k^2q} z(1-y^2) H(q,t) dp dq.$$

$$\rightarrow v_{turb}k^2v_k + v_{turb}^H k^2\omega_k$$

+ eddy noise also depending on helicity

3D MHD, v=η =0 Truncated system

Relaxation to Gibbs ensemble determined by the 3 invariants (Frisch et al. JFM 1975)

 $E_T = E_V + E_M$ $H_C = < v.B >$ $H_M = < A.B >$

Relaxation to force-free fields, including in the presence of H_C

3D MHD, v=η =0 Truncated system

Relaxation to Gibbs ensemble determined by the 3 invariants (Frisch et al. JFM 1975)

 $E_T = E_V + E_M$ $H_C = \langle v.B \rangle$ $H_M = \langle A.B \rangle$

Relaxation to force-free fields, including in the presence of H_C

 $H_{J}(k) = k^{2} H_{M}(k)$ $H_{C}(k) \sim H_{I}(k) \sim H_{V}(k) \sim E_{M}(k)$

Relative energy and helicity $E_R(k) = E_V(k) - E_M(k) < 0$ $H_R(k) = H_V(k) - k^2 H_M(k) < 0$

When $H \neq 0$

Cross correlation 3D MHD, $v=\eta = 0$

Truncated system

Relaxation to Gibbs ensemble determined by the 3 invariants (Frisch (10⁻² al. JFM 1975)

 $E_{T} = E_{V} + E_{M}$ $H_{C} = \langle \mathbf{v} \cdot \mathbf{B} \rangle$ $H_{M} = \langle \mathbf{A} \cdot \mathbf{B} \rangle$

Relaxation to force-free fields, including in the presence of H_C

Alignments

3D MHD, v=η =0 Truncated system

(d)

0

(u)

al. 2012

Stawarz et

0 cos[**v**,ω]

0.5

Ο

0 L

Relaxation to force-free fields, including in the presence of H_C

3D MHD, v=η =0 Truncated system

Relaxation to Gibbs ensemble determined by the 3 invariants (Frisch et al. JFM 1975)

 $E_{T} = E_{V} + E_{M}$ $H_{C} = \langle v.B \rangle$ $H_{M} = \langle A.B \rangle$

Relaxation to force-free fields, including in the presence of H_C

Stribling & Matthaeus 1991, Stawarz et al., 2012

J^2 , early times

Magnetic helicity H_M , normalized

Dimensional analysis: $H_M(k) \sim k^{-2}$

Dimensional analysis: $H_M(k) \sim k^{-2}$

Dimensional analysis: $H_M(k) \sim k^{-2}$

Malapaka & Mueller

Modeling

Lagrangian model (filter)

Magnetic helicity $H_M = \langle A.B \rangle$

* Invariant of the ideal MHD equations
* Not definite positive
* Relaxation to force-free fields

What is the large-scale dynamics of H_M? How does H_M behave at small-scale? *Is there a connection between small-scale and large scales?*

Where/how does it play a role *(e.g., equipartition, or nonlinear dynamo)*? Does it play a role in reconnection? What is the relationship between cross and magnetic helicity? What about kinetic helicity?

What happens when plasma effects are added (e.g., Hall MHD)?

How can it be modeled?

What would be a ``big'' run to progress and to test LES?