Asymptotic Approaches for Rotationally Constrained Convective Flows

Keith Julien¹

Ian Grooms^{4,1}, Antonio Rubio¹, Geoff Vasil², Fox-Kemper³, Edgar Knobloch², Jeff Weiss¹, Michael Calkins¹, Philippe Marti¹, Jon Aurnou⁵

¹ University of Colorado Boulder
² University of California Berkeley
³ Brown University
⁴ Courant Institute of Mathematical Sciences, New York University
⁵ UCLA

Support: NSF FRG DMS-0855010 NSF EAR CSEDI-1067944

Navier-Stokes Equations: GAFD

• Generic non-dimensionalization: $L, U, \Delta T, P$

$$D_t \boldsymbol{u} + Ro^{-1} \hat{\boldsymbol{z}} \times \boldsymbol{u} = -Eu\nabla p + \Gamma T \hat{\boldsymbol{r}} + Re^{-1}\nabla^2 \boldsymbol{u} + \boldsymbol{S}$$
$$D_t T = Pe^{-1}\nabla^2 T$$
$$\nabla \cdot \boldsymbol{u} = 0$$

where $D_t := \partial_t + u \cdot \nabla$ with (u, p, T) for velocity, pressure & temperature fields.

• Non-dimensional Parameters:

Rossby Number
$$Ro = \frac{U}{2\Omega L}$$
Ekman Number $Ek = \frac{Ro}{Re} = \frac{\nu}{2\Omega L^2}$ Euler Number $Eu = \frac{P}{\rho_0 U^2}$ Reynolds Number $Re = \frac{UL}{\nu}$ Buoyancy Number $\Gamma = \frac{g\alpha\Delta TL}{U^2}$ Péclet Number $Pe = \frac{UL}{\kappa}$

Navier-Stokes Equations: Rotationally Constrained Flows, $Ro \ll 1$

• For $Ro \ll 1$ turbulence challenge compounded

$$\underbrace{D_t \boldsymbol{u} + Ro^{-1} \hat{\boldsymbol{z}} \times \boldsymbol{u} = -Eu\nabla p}_{D_t T} + \Gamma T \hat{\boldsymbol{r}} + Re^{-1} \nabla^2 \boldsymbol{u} + \boldsymbol{S} \\
D_t T = Pe^{-1} \nabla^2 T \\
\nabla \cdot \boldsymbol{u} = 0$$

• NSE stiff PDE, ∃ fast inertial waves & slow geostrophically balanced eddies

Fast Inertial Waves

$$\omega_{fast} \sim Ro^{-1} \frac{k_z}{\sqrt{k_\perp^2 + k_z^2}}$$

of secondary importance

Geostrophic Eddies/Slow Waves

$$\omega_{slow} \sim \mathcal{O}(1)$$

 $Ro^{-1}\widehat{\boldsymbol{z}} \times \boldsymbol{u} \approx -Eu\nabla p, \quad \nabla \cdot \boldsymbol{u} = 0 \Rightarrow$
 $\widehat{\boldsymbol{z}} \cdot \nabla(\boldsymbol{u}, p) \approx 0$

Proudman-Taylor Thm (1916,1923) motions are inherently columnar

Planetary Scale Rotationally Constrained Convection $Ro\ll 1$

turbulence primary driver for geomagnetic field

 $Ro \sim 10^{-7}$ $Re \sim 10^{8}$ $Ek \sim 10^{-15}$ large-scale flow generation

 $Ro \sim 10^{-2}$ $Re \sim 10^{16}$ $Ek \sim 10^{-18}$

Axial vorticity, Ek~1e-6 (Kageyama et al Nature 2008) Convective Rossby waves, still viscously controlled Earth's Core: $l\sim DE^{1/3}\approx 10m$

Rapidly rotating Sun; Brown et al ApJ 2010

Ocean dynamics

planetary - gyre scale ~ O(1000) km

mesoscale ~ O(100) km

submesoscale $\leq O(1)$ km

open-ocean deep convection: mesoscale

- preconditioning
 - . cyclonic gyre domes isopycnals, $L \sim 100 {\rm km}$
- deep convection
 - cooling events trigger deep plumes, $L \lesssim 1 {\rm km}$ $H \sim 2 {\rm km}$, $U \lesssim 10 {\rm cm/s}$
- lateral exchange
 - geostrophic eddies, $L \sim 10 {\rm km}$

influenced by rotation

• natural Rossby number $Ro^* \sim 0.1 - 0.4$

$$Ro^* = \frac{L_{rot}}{H} = \left(\frac{B}{f^3 H^2}\right)^{1/2}$$

Resolution of Ocean Component of Coupled IPCC models

Top-down approach: DNS not possible for several centuries!

Resolution of Ocean Component of Coupled IPCC models

Approach to geostrophic turbulence bottom-up? middle-out?

Rotationally constrained (geostrophic) convective flows are highly anisotropic

- When do geometry and boundary conditions directly influence the small scales, and how might this be parameterized
 - theory ⇒ mechanical bc's of secondary importance; Lab/DNS ⇒ hard to achieve high Re Low Ro regimes
- When do boundary conditions influence the small scales via the dynamics of the large scales
 - vortex stretching in spherical geometries?
- Differences for LES closures to address in cartesian and spherical geometries
 – presently N/A
- When are boundary conditions unimportant?
 - thermal bl's have surprising affect on rotational constraint
- Links between small scale and large scales
 - geostrophic convective turbulence very efficient at driving large-scale flows, sustained in a +ve feedback loop
- Where is the KE injected? Should the buoyancy force do significant work on the SGS?
 -to-date KE spectrum containing convection must be resolved, Low Ro challenge ⇒ separation of scales issue
- Magnetic Field/dynamos!

Top-down approach: DNS not possible for several centuries!

Rotationally constrained (geostrophic) convective flows are highly anisotropic

- When do geometry and boundary conditions directly influence the small scales, and how might this be parameterized
 - theory ⇒ mechanical bc's of secondary importance; Lab/DNS ⇒ hard to achieve high Re Low Ro regimes
- When do boundary conditions influence the small scales via the dynamics of the large scales
 - vortex stretching in spherical geometries?
- Differences for LES closures to address in cartesian and spherical geometries

 presently N/A
- When are boundary conditions unimportant?
 - thermal bl's have surprising affect on rotational constraint
- Links between small scale and large scales
 - geostrophic convective turbulence very efficient at driving large-scale flows, sustained in a +ve feedback loop
- Where is the KE injected? Should the buoyancy force do significant work on the SGS?
 - to-date KE spectrum containing convection must be resolved, Low Ro challenge ⇒ separation of scales issue
- Magnetic Field/dynamos!

Investigate simplified model scenarios

Laboratory Experiments are limited by engineering and fluid properties

Laboratory Experiments are limited by engineering and fluid properties

Sakai, JFM 1997: RaE^{4/3} = 36, Ro \approx 0.1, σ = 7

Experiments:

- Rossby, JFM 1969
- Zhong, Ecke & Steinberg, JFM 1993
- Sakai, JFM 1997
- Vorobieff & Ecke, JFM 2002
- King, Stellmach, Noir, Hansen, & Aurnou, Nature 2009
- Kunnen, Guerts & Clerx, JFM 2010
- Zhong & Ahlers, JFM 2010
- Lui & Ecke, PRE 2011

Widely held belief that rotationally constrained motions are strictly columnar

RRBC Results

Parameterization: dependence of global fluid properties on [Re(Ra), Ro, Ek, Pr]

RRBC Results - Heat Transport

UCLA group: courtesy Aurnou & Cheng King et al Nature 2009

Parameterization: dependence of global fluid properties on [Re(Ra), Ro, Ek, Pr]

• Heat Transport - Nusselt Number

$$Nu - 1 \propto \sigma^{\alpha} (Ra/Ra_c)^{\beta}$$

- Flow Morphology
 - Pathway to geostrophic turbulence at low Ro

RRBC Results - Heat Transport

Parameterization: dependence of global fluid properties on [Re(Ra), Ro, Ek, Pr]

• Heat Transport - Nusselt Number

$$Nu - 1 \propto \sigma^{\alpha} (Ra/Ra_c)^{\beta}$$

- Flow Morphology
 - Pathway to geostrophic turbulence at low Ro

- Low Ro transition to non-rotating scaling law
- Appears to be a thermal bl effect

UCLA group: courtesy Aurnou & Cheng King et al Nature 2009

RRBC Results - Lateral Mixing

Results: Mean Temperature ($\widetilde{Ra} = 160$ **)**

Parameterization: dependence of global fluid properties on [Re(Ra), Ro, Ek, Pr]

• Heat Transport - Nusselt Number

$$Nu - 1 \propto \sigma^{\alpha} (Ra/Ra_c)^{\beta}$$

- Flow Morphology
 Pathway to geostrophic turbulence at low Ro
- Transitions
 - Low Ro transition to non-rotating scaling law
 - Appears to be a thermal bl effect

• Mixing

- saturation of mean temp. gradient

$$\partial_z \overline{T}_{mid} \propto \sigma^\gamma (Ra_T/Ra_c)^\delta$$

RRBC Results - Lateral Mixing

Parameterization: dependence of global fluid properties on [Re(Ra), Ro, Ek, Pr]

• Heat Transport - Nusselt Number

$$Nu - 1 \propto \sigma^{\alpha} (Ra/Ra_c)^{\beta}$$

- Flow Morphology
 Pathway to geostrophic turbulence at low Ro
- Transitions
 - Low Ro transition to non-rotating scaling law
 - Appears to be a thermal bl effect

• Mixing

- saturation of mean temp. gradient

$$\partial_z \overline{T}_{mid} \propto \sigma^\gamma (Ra_T/Ra_c)^\delta$$

RRBC Results - Large Scale Flow Generation

Ra=10⁹, Ro=0.36, σ = 7, Kunnen. et al JFM 2011

Convection appears to drive large scale (barotropic) dynamics.

Low Rossby Number Computational Challenge

• Fast waves + geostrophically balanced eddies limit DNS/Lab investigations

$$\partial_t \boldsymbol{u} + Ro^{-1} \widehat{\boldsymbol{z}} \times \boldsymbol{u} \approx -E u \nabla p, \quad \nabla \cdot \boldsymbol{u} = 0$$

Low Rossby Number Computational Challenge

• Fast waves + geostrophically balanced eddies limit DNS/Lab investigations

$$\partial_t \boldsymbol{u} + Ro^{-1} \widehat{\boldsymbol{z}} \times \boldsymbol{u} \approx -Eu \nabla p, \quad \nabla \cdot \boldsymbol{u} = 0$$

• Existence of reduced PDE models that filter fast waves and automatically enforce geostrophic balance?

Multi-Scale Asymptotics to the Rescue

- Exploit small parameters asymptotically (Ro, Ek): $oldsymbol{u} = oldsymbol{u}_0 + Rooldsymbol{u}_1 + \cdots$
- Leading order balance, geostrophic approx'n (fast inertial waves filtered; Embid & Majda GAFD '98)

$$\begin{array}{c} Ro^{-1} \left(\widehat{\boldsymbol{z}} \times \boldsymbol{u} + \nabla p \right) \approx 0 \\ \nabla \cdot \boldsymbol{u} = 0 \end{array} \end{array} \right\} \implies \quad \nabla_{\perp} \cdot \boldsymbol{u}_{\perp} \approx 0 \qquad \partial_{z} \left(\boldsymbol{u}_{\perp}, \boldsymbol{w}, p \right) \approx 0 \\ \text{T-P constraint} \end{array}$$

- Diagnostic solution: $\boldsymbol{u} \approx -\nabla \times \psi \widehat{\boldsymbol{z}} + w \widehat{\boldsymbol{z}}, \qquad p = \psi \qquad \zeta = \nabla_{\perp}^2 \psi$ Quasigeostrophic perturbation theory, solvability: $\widehat{\boldsymbol{z}} \cdot \nabla \times, \quad \widehat{\boldsymbol{z}} \quad \Leftrightarrow \quad \overline{f} = \frac{1}{2\lambda} \int_{-\lambda}^{\lambda} f dz$
- Reinterpret Taylor-Proudman theory (MSA; KJ, Knobloch, Milliff & Werne, JFM 2006)

Multi-Scale Asymptotics to the Rescue

- Exploit small parameters asymptotically (Ro, Ek): $oldsymbol{u} = oldsymbol{u}_0 + Rooldsymbol{u}_1 + \cdots$
- Leading order balance, geostrophic approx'n (fast inertial waves filtered; Embid & Majda GAFD '98)

$$\begin{array}{c} Ro^{-1} \left(\widehat{\boldsymbol{z}} \times \boldsymbol{u} + \nabla p \right) \approx 0 \\ \nabla \cdot \boldsymbol{u} = 0 \end{array} \end{array} \right\} \implies \quad \nabla_{\perp} \cdot \boldsymbol{u}_{\perp} \approx 0 \qquad \partial_{z} \left(\boldsymbol{u}_{\perp}, \boldsymbol{w}, p \right) \approx 0 \\ \text{T-P constraint} \end{array}$$

- Diagnostic solution: $m{u} \approx
 abla imes \psi \widehat{m{z}} + w \widehat{m{z}}, \qquad p = \psi \qquad \zeta =
 abla_{\perp}^2 \psi$
- Quasigeostrophic perturbation theory, solvability: $\hat{z} \cdot \nabla \times$, $\hat{z} \cdot \Leftrightarrow \overline{f} = \frac{1}{2\lambda} \int_{-\lambda}^{\lambda} f dz$
- Reinterpret Taylor-Proudman theory (MSA; KJ, Knobloch, Milliff & Werne, JFM 2006)

Multi-Scale Asymptotics to the Rescue

- Exploit small parameters asymptotically (Ro, Ek): $oldsymbol{u} = oldsymbol{u}_0 + Rooldsymbol{u}_1 + \cdots$
- Leading order balance, geostrophic approx'n (fast inertial waves filtered; Embid & Majda GAFD '98)

$$\begin{array}{c} Ro^{-1} \left(\widehat{\boldsymbol{z}} \times \boldsymbol{u} + \nabla p \right) \approx 0 \\ \nabla \cdot \boldsymbol{u} = 0 \end{array} \end{array} \right\} \implies \quad \nabla_{\perp} \cdot \boldsymbol{u}_{\perp} \approx 0 \qquad \partial_{z} \left(\boldsymbol{u}_{\perp}, \boldsymbol{w}, p \right) \approx 0 \\ \text{T-P constraint} \end{array}$$

- Diagnostic solution: $\boldsymbol{u} \approx -\nabla \times \psi \widehat{\boldsymbol{z}} + w \widehat{\boldsymbol{z}}, \qquad p = \psi \qquad \zeta = \nabla_{\perp}^2 \psi$ • Quasigeostrophic perturbation theory, solvability: $\widehat{\boldsymbol{z}} \cdot \nabla \times, \quad \widehat{\boldsymbol{z}} \quad \Leftrightarrow \quad \overline{f} = \frac{1}{2\lambda} \int_{-\lambda}^{\lambda} f dz$
- Reinterpret Taylor-Proudman theory (MSA; KJ, Knobloch, Milliff & Werne, JFM 2006)

Four Flow Regimes as Ra 1

CTC's give way to GT (columnar flow not the end state!)

Turbulent Inverse Cascade (Julien et al GAFD 2012)

GT drives large scale barotropic vortices (jets on f-plane?)

Turbulent Heat Transport Scaling Law (Julien et al PRL 2012)

GT interior restricts turbulent HT NOT thermal BL's

Thermal anomaly θ

$$\begin{split} \boldsymbol{g} &= -\widehat{\boldsymbol{z}} \\ \partial_t \zeta + J \left[\psi, \zeta \right] - \partial_Z w = \nabla_{\perp}^2 \zeta \\ \partial_t w + J \left[\psi, w \right] + \partial_Z \psi = \nabla_{\perp}^2 w + \frac{Ra}{\sigma} \overline{\theta} \\ \partial_t \overline{\theta} + J \left[\psi, \overline{\theta} \right] + w \partial_Z \langle \overline{T} \rangle = \frac{1}{\sigma} \nabla_{\perp}^2 \overline{\theta} \\ \partial_Z \langle w \overline{\theta} \rangle = \frac{1}{\sigma} \partial_{ZZ} \langle \overline{T} \rangle \\ J. \text{ et al JFM 2006, GAFD '12} \end{split}$$

Four Flow Regimes as Ra \uparrow

CTC's give way to GT (columnar flow not the end state!)

Turbulent Inverse Cascade (Julien et al GAFD 2012)

GT drives large scale barotropic vortices (jets on f-plane?)

Turbulent Heat Transport Scaling Law (Julien et al PRL 2012)

GT interior restricts turbulent HT NOT thermal BL's

Thermal anomaly θ

g

GT interior restricts turbulent HT NOT thermal BL's

 $oldsymbol{g}=-\widehat{oldsymbol{z}}$

Four Flow Regimes as Ra \uparrow

CTC's give way to GT (columnar flow not the end state!)

Turbulent Inverse Cascade (Julien et al GAFD 2012)

GT drives large scale barotropic vortices (jets on f-plane?) Calkins, J, Rubio '13

Turbulent Heat Transport Scaling Law (Julien et al PRL 2012)

J. et al GAFD '12; Rubio, J., Weiss submitted '13

Depth averaged vorticity

GT interior restricts turbulent HT NOT thermal BL's $Nu - 1 = C_1 \sigma^{-1/2} R a^{3/2} E^2$

 $oldsymbol{g} = -\widehat{oldsymbol{z}}$

Four Flow Regimes as Ra \uparrow

CTC's give way to GT (columnar flow not the end state!)

Turbulent Inverse Cascade (Julien et al GAFD 2012)

GT drives large scale barotropic vortices (jets on f-plane?) Calkins, J, Rubio '13

Turbulent Heat Transport Scaling Law (Julien et al PRL 2012)

GT interior restricts turbulent HT NOT thermal BL's $Nu - 1 = C_1 \sigma^{-1/2} R a^{3/2} E^2$

J. et al GAFD '12; Rubio, J., Weiss submitted '13

 $oldsymbol{g} = \widehat{oldsymbol{r}}$

Four Flow Regimes as Ra \uparrow

CTC's give way to GT (columnar flow not the end state!)

Calkins, Julien, Rubio '13

Turbulent Inverse Cascade (Julien et al GAFD 2012)

GT drives large scale barotropic vortices (jets on f-plane?) Calkins, J, Rubio '13

Turbulent Heat Transport Scaling Law (Julien et al PRL 2012)

GT interior restricts turbulent HT NOT thermal BL's $Nu - 1 = C_1 \sigma^{-1/2} R a^{3/2} E^2$

North

RaE^{4/3} = 5, σ = 7, χ = 45

 $oldsymbol{g}=\widehat{oldsymbol{r}}$

Four Flow Regimes as Ra 1

CTC's give way to GT (columnar flow not the end state!)

Calkins, Julien, Rubio '13

RaE^{4/3} = 35, σ = 7, χ = 45

 \oplus N

Turbulent Inverse Cascade (Julien et al GAFD 2012)

GT drives large scale barotropic vortices (jets on f-plane?) Calkins, J, Rubio '13

Turbulent Heat Transport Scaling Law (Julien et al PRL 2012)

GT interior restricts turbulent HT NOT thermal BL's $Nu - 1 = C_1 \sigma^{-1/2} R a^{3/2} E^2$

Ultimate Heat Transport Scaling Law Low Ro Heat Transfer: $Nu - 1 = \frac{1}{25}\sigma^{-\frac{1}{2}} \left(RaE^{\frac{4}{3}}\right)^{\frac{3}{2}}$

Convective Taylor Columns

Nondimensional #'s:

$$Nu \equiv \frac{QH}{\rho_0 c_p \kappa \Delta T}, \quad Ra = \frac{g \alpha \Delta T H^3}{\nu \kappa}, \quad E = \frac{\nu}{f H^2}$$
$$\sigma = \frac{\nu}{\kappa}$$

Ultimate Heat Transport Scaling Law Low Ro Heat Transfer: $Nu - 1 = \frac{1}{25}\sigma^{-\frac{1}{2}} \left(RaE^{\frac{4}{3}}\right)^{\frac{3}{2}}$

Geostrophic Turbulence

Nondimensional #'s:

$$Nu \equiv \frac{QH}{\rho_0 c_p \kappa \Delta T}, \quad Ra = \frac{g \alpha \Delta T H^3}{\nu \kappa}, \quad E = \frac{\nu}{f H^2}$$
$$\sigma = \frac{\nu}{\kappa}$$

Low Ro Heat Transfer:

$$Nu - 1 = \frac{1}{25}\sigma^{-\frac{1}{2}} \left(RaE^{\frac{4}{3}}\right)^{\frac{3}{2}}$$

 turbulent interior controls heat transport (GL theory)

$$\begin{aligned} \mathcal{E}_{\theta} &\approx \mathcal{E}_{\theta}^{int} = \left\langle \left| \partial_{Z} \overline{T} \right|^{2} \right\rangle + \left\langle \left| \nabla_{\perp} \theta \right|^{2} \right\rangle \\ &\equiv N u \end{aligned}$$

Nondimensional #'s:

$$Nu \equiv \frac{QH}{\rho_0 c_p \kappa \Delta T}, \quad Ra = \frac{g \alpha \Delta T H^3}{\nu \kappa}, \quad E = \frac{\nu}{f H^2}$$
$$\sigma = \frac{\nu}{\kappa}$$

3D Quasigeostrophic- β convection

 $3DQG-\beta$ convection valid for O(1) slopes

strong vertical motions, w~O(u)

Linear Stability: Fundamental mode is the Busse mode (Busse, JFM '70)

Vertically invariant Busse regime recaptured as $\chi \rightarrow 0$, modulation otherwise

New 3D Rossby modes of propagation

3D Quasigeostrophic- β convection

 $3DQG-\beta$ convection valid for O(1) slopes

strong vertical motions, w~O(u)

Linear Stability: Fundamental mode is the Busse mode (Busse, JFM '70)

Vertically invariant Busse regime recaptured as $\chi \rightarrow 0$, modulation otherwise

New 3D Rossby modes of propagation

3D Quasigeostrophic- β convection

$$g = r$$

$$\partial_t \zeta + J [\psi, \zeta] - \partial_Z w = \nabla_{\perp}^2 \zeta + \frac{Ra}{\sigma 16} \partial_y \overline{T}$$

$$\partial_t w + J [\psi, w] + \left(\frac{\beta}{\tan \chi}\right)^2 \partial_Z \psi = \nabla_{\perp}^2 w$$

$$\partial_t \overline{T} + J [\psi, \overline{T}] = \frac{1}{\sigma} \nabla_{\perp}^2 \overline{T}$$
BC: $\widetilde{w} \mp \left(\frac{\tan \chi}{A_H E}\right) \partial_y \psi = 0$

 \rightarrow 3DQG- β convection valid for O(1) slopes

strong vertical motions, w~O(u)

Linear Stability: Fundamental mode is the Busse mode (Busse, JFM '70)

Vertically invariant Busse regime recaptured as $\chi \rightarrow 0$, modulation otherwise

New 3D Rossby modes of propagation

$$\partial_t \zeta + J\left[\psi,\zeta\right] - \partial_Z w = \nabla_\perp^2 \zeta + \frac{Ra}{\sigma 16} \partial_y \overline{T}$$

$$\partial_t w + J \left[\psi, w\right] + \left(\frac{\beta}{\tan \chi}\right)^2 \partial_Z \psi = \nabla_\perp^2 w$$
$$\partial_t \overline{T} + J \left[\psi, \overline{T}\right] = \frac{1}{\sigma} \nabla_\perp^2 \overline{T}$$
$$BC: \quad \widetilde{w} \mp \left(\frac{\tan \chi}{A_H E}\right) \ \partial_y \psi = 0$$

• 3DQG- β convection valid for O(1) slopes

strong vertical motions, w~O(u)

Linear Stability: Fundamental mode is the Busse mode (Busse, JFM '70)

Vertically invariant Busse regime recaptured as $\chi \rightarrow 0$, modulation otherwise

New 3D Rossby modes of propagation

$$\partial_t \zeta + J\left[\psi, \zeta\right] - \partial_Z w = \nabla_\perp^2 \zeta + \frac{Ra}{\sigma 16} \partial_y \overline{T}$$

$$\partial_t w + J [\psi, w] + \left(\frac{\beta}{\tan \chi}\right)^2 \partial_Z \psi = \nabla_\perp^2 w$$
$$\partial_t \overline{T} + J [\psi, \overline{T}] = \frac{1}{\sigma} \nabla_\perp^2 \overline{T}$$
$$BC: \quad \widetilde{w} \mp \left(\frac{\tan \chi}{A_H E}\right) \ \partial_y \psi = 0$$

3DQG-β convection valid for O(1) slopes strong vertical motions, w~O(u)

Linear Stability: Fundamental mode is the Busse mode (Busse, JFM '70)

Vertically invariant Busse regime recaptured as $\chi \rightarrow 0$, modulation otherwise

New 3D Rossby modes of propagation

Dynamics are fundamentally three dimensional! Dynamics cannot be treated two dimensionally

$$\partial_t \zeta + J\left[\psi, \zeta\right] - \partial_Z w = \nabla_\perp^2 \zeta + \frac{Ra}{\sigma 16} \partial_y \overline{T}$$

$$\partial_t w + J [\psi, w] + \left(\frac{\beta}{\tan \chi}\right)^2 \partial_Z \psi = \nabla_\perp^2 w$$
$$\partial_t \overline{T} + J [\psi, \overline{T}] = \frac{1}{\sigma} \nabla_\perp^2 \overline{T}$$
$$BC: \quad \widetilde{w} \mp \left(\frac{\tan \chi}{A_H E}\right) \ \partial_y \psi = 0$$

3DQG-β convection valid for O(1) slopes strong vertical motions, w~O(u)

Linear Stability: Fundamental mode is the Busse mode (Busse, JFM '70)

Vertically invariant Busse regime recaptured as $\chi \rightarrow 0$, modulation otherwise

New 3D Rossby modes of propagation

Dynamics are fundamentally three dimensional! Dynamics cannot be treated two dimensionally

$$\partial_t \zeta + J\left[\psi, \zeta\right] - \partial_Z w = \nabla_\perp^2 \zeta + \frac{Ra}{\sigma 16} \partial_y \overline{T}$$

$$\partial_t w + J [\psi, w] + \left(\frac{\beta}{\tan \chi}\right)^2 \partial_Z \psi = \nabla_\perp^2 w$$
$$\partial_t \overline{T} + J [\psi, \overline{T}] = \frac{1}{\sigma} \nabla_\perp^2 \overline{T}$$
$$BC: \quad \widetilde{w} \mp \left(\frac{\tan \chi}{A_H E}\right) \ \partial_y \psi = 0$$

3DQG-β convection valid for O(1) slopes strong vertical motions, w~O(u)

Linear Stability: Fundamental mode is the Busse mode (Busse, JFM '70)

Vertically invariant Busse regime recaptured as $\chi \rightarrow 0$, modulation otherwise

New 3D Rossby modes of propagation

Dynamics are fundamentally three dimensional! Dynamics cannot be treated two dimensionally

$$\begin{split} \bar{U} &= \hat{Z} \times \bar{\nabla}_{\perp} \bar{P}, \quad \bar{\Theta} = \partial_{Z} \bar{P} \\ \begin{pmatrix} \frac{\partial}{\partial \bar{t}} + \bar{U} \cdot \bar{\nabla} \end{pmatrix} \partial_{Z} \bar{P} = 0 \qquad \frac{\partial \langle \bar{U} \rangle}{\partial \bar{t}} + \bar{\nabla} \cdot \langle \bar{U} \otimes \bar{U} + u \otimes u \rangle = -\bar{\nabla} \langle \bar{\Pi} \rangle \\ \\ \text{Baroclinic Dynamics} & \text{Barotropic Dynamics} \\ & \hat{z} \times u_{\perp} = -\nabla_{\perp} p, \quad p = -\psi \\ (\partial_{t} + \bar{U} \cdot \nabla_{\perp}) \nabla_{\perp}^{2} \psi + J(\psi, \nabla_{\perp}^{2} \psi) + \partial_{Z} w = \frac{1}{\text{Re}} \nabla_{\perp}^{4} \psi \\ (\partial_{t} + \bar{U} \cdot \nabla_{\perp}) w + J(\psi, w) - \partial_{Z} \psi = \theta + \frac{1}{\text{Re}} \nabla_{\perp}^{2} w \\ (\partial_{t} + \bar{U} \cdot \nabla_{\perp}) \theta + J(\psi, \theta) + \nabla_{\perp} \psi \cdot \partial_{Z} \bar{U} + w \partial_{Z} \bar{\Theta} = \frac{1}{\text{Pe}} \nabla_{\perp}^{2} \theta \\ & \left(\frac{\partial}{\partial \tau} - \frac{1}{\text{Pe}} \partial_{Z}^{2} \right) \bar{T} = -\partial_{Z} \bar{F} \\ & \text{Global Mean Temperature & Flux} \\ \bar{T} = \lim_{t \to \infty} \frac{1}{t} \int_{0}^{t} \frac{1}{|A|} \int_{A} \bar{\Theta} \, dX \, dY \, d\vec{t}' \qquad \bar{F} = \lim_{t \to \infty} \frac{1}{t} \int_{0}^{t} \frac{1}{|A|} \left[\int_{A} \overline{w\theta} \, dX \, dY - \oint_{\partial A} \bar{U} \cdot dt \right] d\vec{t}' \end{split}$$

Outlook for 3D QG

Thank you

- Reduced PDE's well suited to QG dynamics, computationally less challenging.
- Incompressible aDNS ("a"symptotic)
 - Investigate route to turbulence: columnar breakdowr
 - Mean flow generation: inverse turbulent cascade?
 - Efficiency of heat transport: scaling laws
- Anelastic (stratification) aDNS Simulations
- Coupling to reduced planetary scale dynamics, required by MHD

Julien et al GAFD '12 Julien et al PRL '12

