

# How anisotropic can you get? models and observations

W H Matthaeus

# What are causes of anisotropy?

- Mean magnetic field
- Expansion
  - uniform expansion  $\rightarrow$  radial preferred direction
- Shear (velocity, magnetic, density...)
  - as in Rogallo models
- Rotation
  - Taylor-Proudman thm, etc

These can compete with each other!

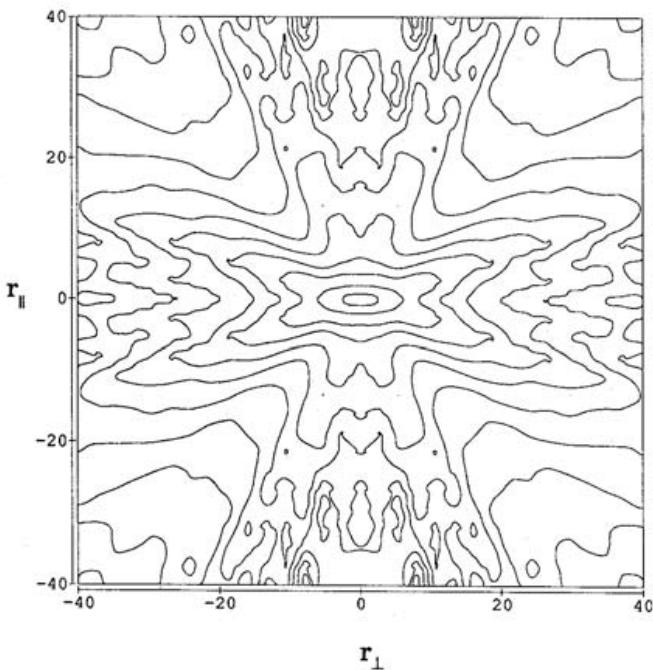
# Spectral/correlation anisotropy

- Theory
- Simulation
- Observation in SW

2D axisymmetric magnetic field correlation fn. from  $\sim 2$  years of ISEE-3 data

“Maltese Cross”

Mathaeus et al 1990

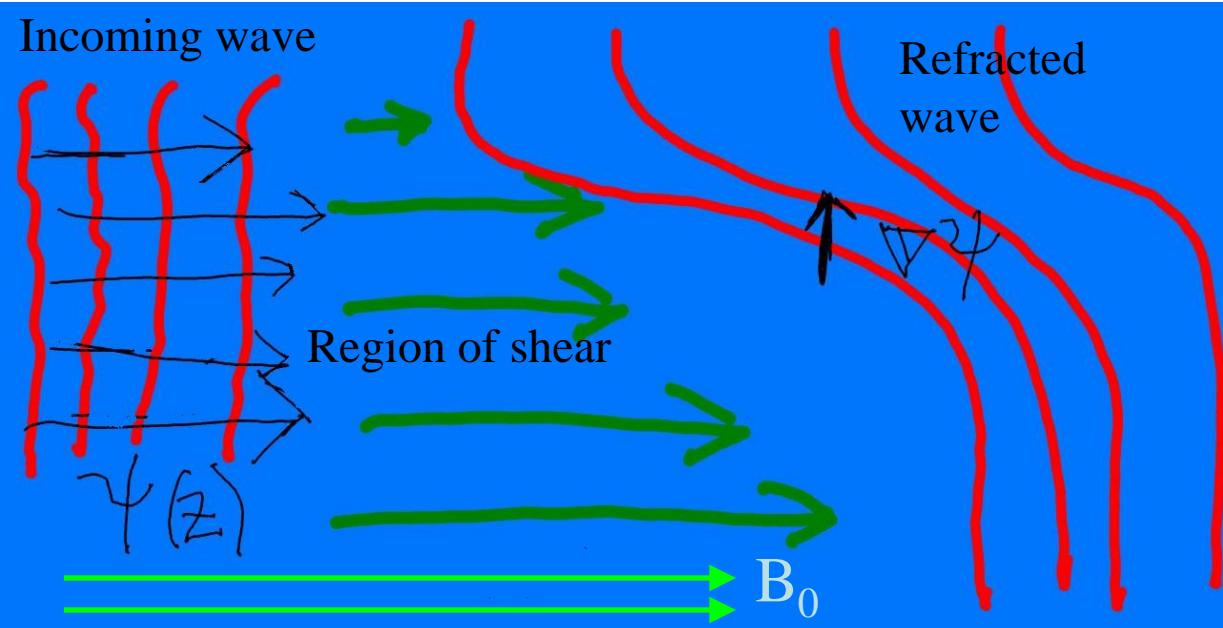
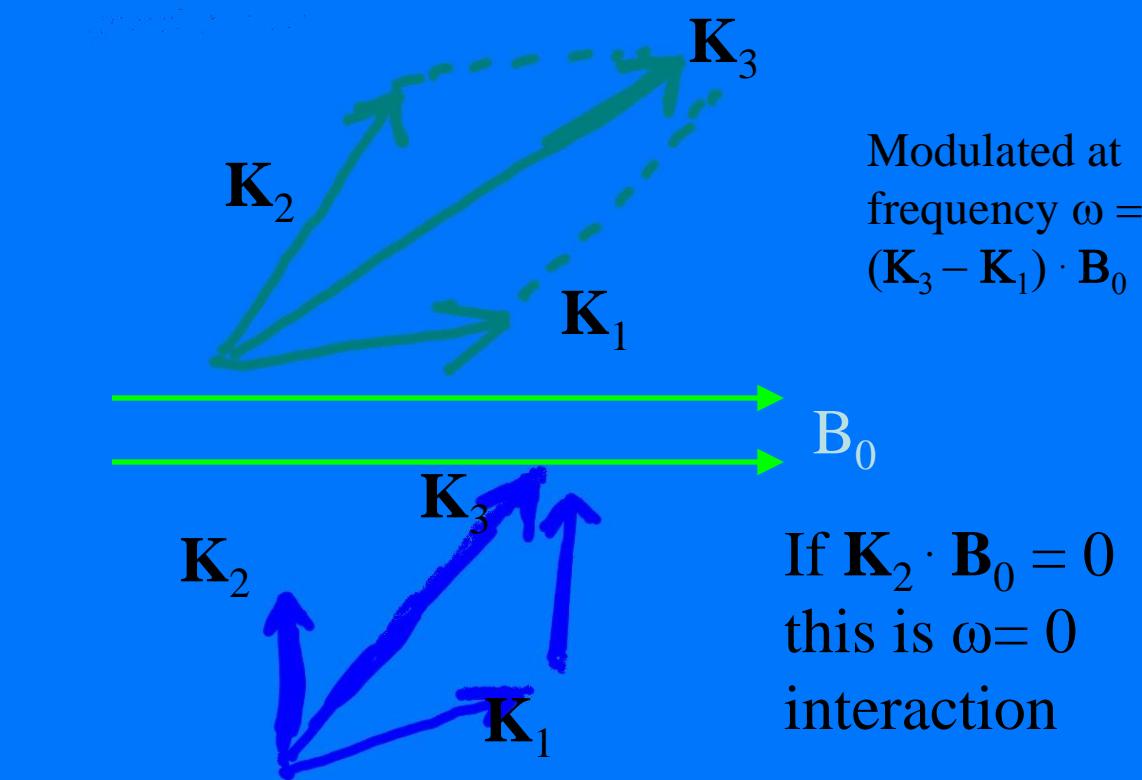


Parallel  
Direction →

Perp  
plane



Dmitruk + whm, 2004



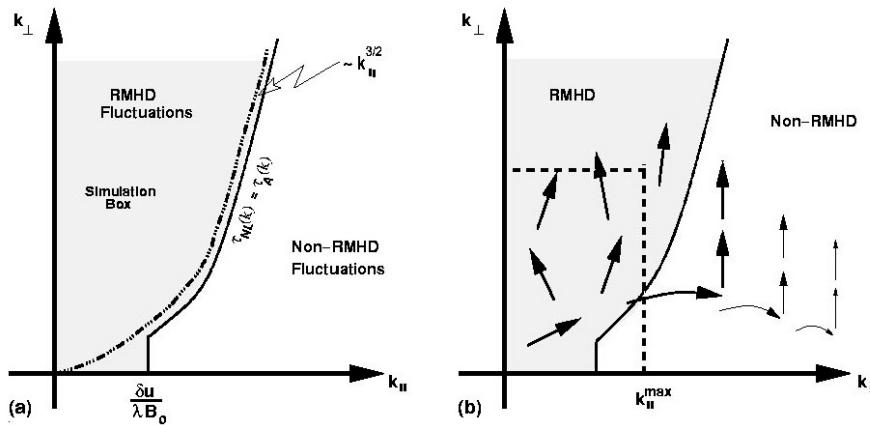
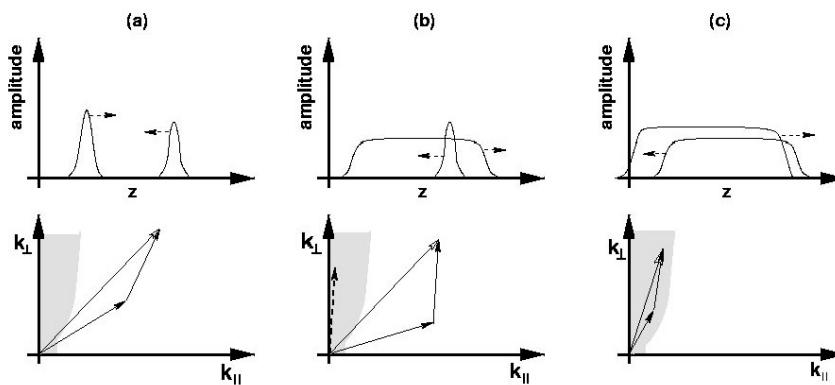


FIG. 1. (a) Cartoon sketch depicting the RMHD and non-RMHD regions, in Fourier space, and their boundary (solid curve) defined by the modal RMHD condition:  $\tau_{NL}(\mathbf{k}) = \tau_A(\mathbf{k})$ , subject to the fluctuations being of small amplitude. The dash-dot curve represents the asymptotically valid form for the inertial range boundary,  $k_\perp \sim (k_\parallel B_0)^{3/2}$ . For illustration this has been inap-



## Anisotropy due to mean magnetic field

- global (Robinson Rusbridge, 1970; Montgomery Turner, 1982; Shebalin et al, 1983; Oughton et al, 1994)
- Local (Cho Vishniac, 2000; Milano et al, 2001)
  - Stronger than global
  - Random coordinate system
  - Does not relate directly to spectrum but to higher order statistics

# Local and global anisotropy measures in 3D $512^3$ MHD

Conditional structure functions, with separation parallel to, or perp to, local magnetic field (Milano et al, Phys Plasma, 2001; Matthaeus et al, 2012)

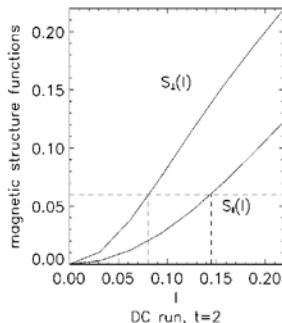
$$D(s) = \langle |\mathbf{B}(\mathbf{x}) - \mathbf{B}(\mathbf{x} + s\mathbf{y})|^2 \rangle$$

$$D^\perp(s) : \mathbf{y} \perp \langle \mathbf{B} \rangle^*$$

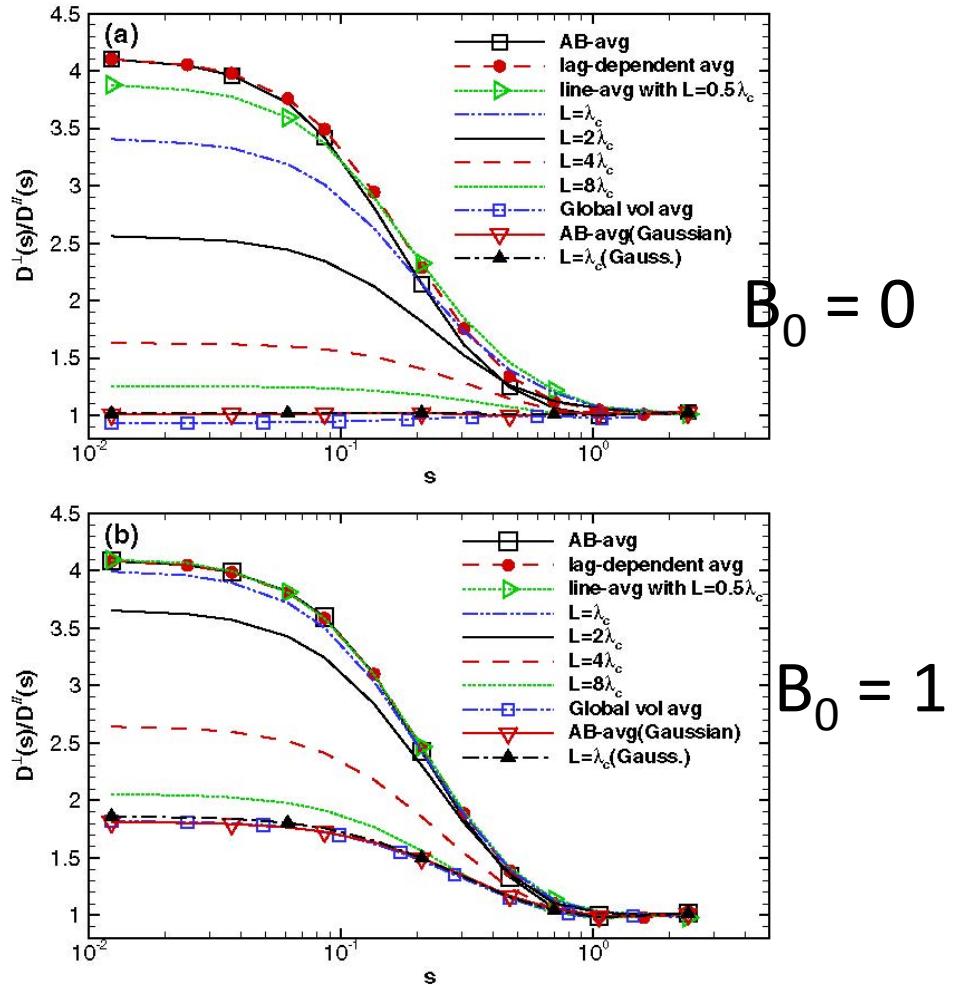
$$D^\parallel(s) : \mathbf{y} \parallel \langle \mathbf{B} \rangle^*$$

plots:  $D^\perp(s)/D^\parallel(s)$

With various definitions of  $\langle \mathbf{B} \rangle^*$



← Individual structure functions  
With local “box” average”



# Limiting effects

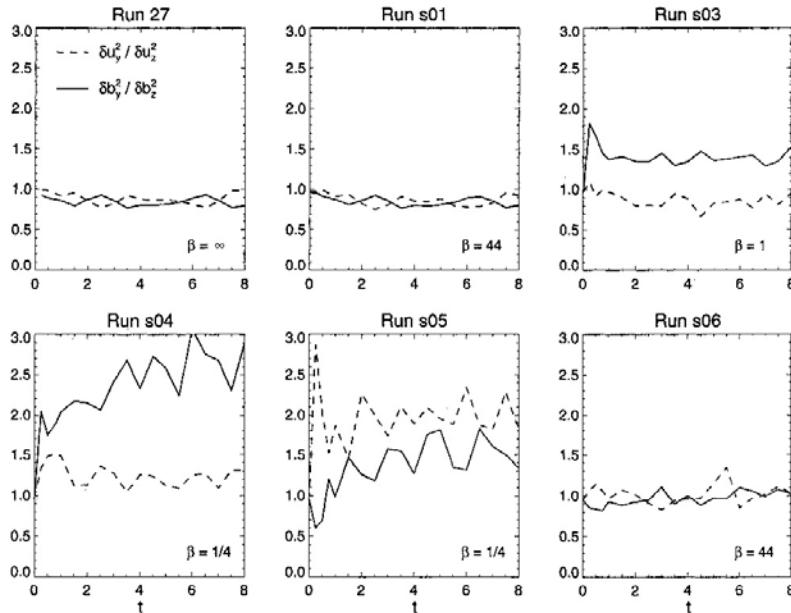
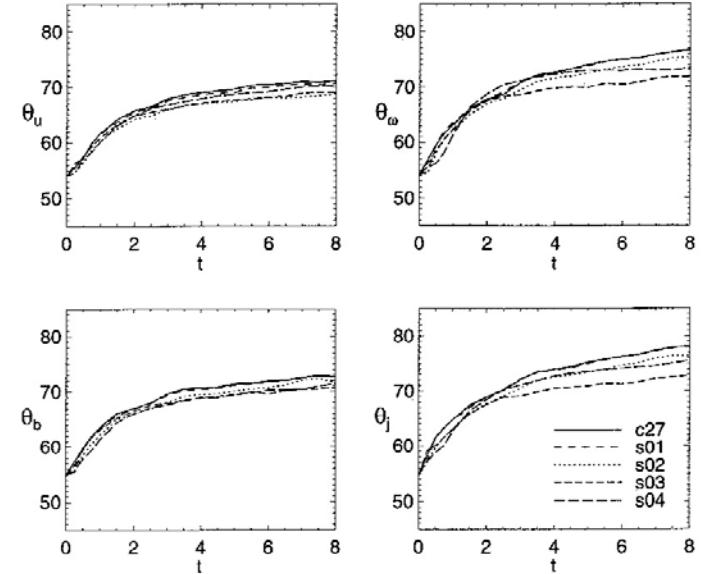
- Competition of drivers
- Specific structure of the energy containing scales
- Parallel spectral transfer
- Compressive couplings
- Sources (shear driving wave particle interactions...)

# Comparison of spectral and variance anisotropies

**Table 1.** Parameters for the Compressible and Incompressible Runs

| Run | $B_0$ | $\delta b/B_0$ | $M_s$ | $\beta$  | Spectral |       |     | Var<br>$\delta u_x^2/\delta u_z^2$ |
|-----|-------|----------------|-------|----------|----------|-------|-----|------------------------------------|
|     |       |                |       |          | $u_T$    | $u_L$ | $p$ |                                    |
| c27 | 1     | 1              | 0     | $\infty$ | S        | —     | —   | 0.87                               |
| s01 | 1     | 1              | 0.15  | 44.4     | S        | I     | M   | 0.85                               |
| s02 | 1     | 1              | 0.5   | 4        | S        | I     | M   | 0.82                               |
| s03 | 2     | 1/2            | 0.5   | 1        | S        | I     | S   | 0.85                               |
| s04 | 4     | 1/4            | 0.5   | 1/4      | S        | I     | S   | 1.2                                |
| s05 | 4     | 1/4            | 0.5   | 1/4      | M        | I     | M   | 2.0                                |
| s06 | 1     | 1              | 0.15  | 44.4     | S        | I     | I   | 1.0                                |

Horizontal spaces separate runs with distinct initial data. Run c27 is incompressible, runs s01-s04 (cat solenoidal (transverse) initial velocity, and runs s05-s06 (category 2) an irrotational (longitudinal) initial  $N = 64$  Fourier modes are used in each direction,  $v = \mu = 1/250$ , and the initially excited wavenumbers lie and 8. Columns 6-10 summarize the results of the runs in terms of (1) the level of spectral anisotropy (S, strong; M, moderate; I, isotropic), and (2) the average of the variance ratios (for  $t \geq 2$ ). All runs spectral anisotropy in  $\omega$ ,  $b$ , and  $j$ .



**Figure 2.** Anisotropy angles as a function of time for  $u, \omega, b$ , and  $j$ . Note the approximate similarity between the incompressible and compressible results. Angles are in degrees.

- Incompressible MHD does not collapse to “Alfven mode”
- Compressible MHD evolves towards low parallel variance
- Spectral anisotropy  $K_{\text{perp}} > K_{\text{par}}$  always occurs

# Conclusions/points of discussion

- Many factors can cause/limit anisotropy
- Variance anisotropy is not a property of incompressible MHD
- Spectral anisotropy is a function of Reynolds number
- Compressive modes sometimes/always much more isotropic than incomp. Modes

→ IN MODELING: better NOT make extreme assumptions at the onset!

→ IN MODELING: better to not make extreme assumptions about anisotropy except maybe in extreme circumstances

→ IN MODELING: how can local anisotropy be built in? It's a higher order statistic...do we need it ?