How anisotropic can you get?
models and observations



What are causes of anisotropy?

Mean magnetic field

Expansion
— uniform expansion—2>radial preferred direction

Shear (velocity, magnetic, density...)
— as in Rogallo models

Rotation
— Taylor-Proudman thm, etc

These can compete with each other!



Spectral/correlation anisotropy

* Theory

e Simulation
e Observation in SW
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FIG. 1. (a) Cartoon sketch depicting the RMHD and non-RMHD regions, in
Fourier space, and their boundary (solid curve) defined by the modal RMHD
condition: 7 (k)= 7,(K), subject to the fluctuations being of small ampli-
tude. The dash-dot curve represents the asymptotically valid form for the
inertial range boundary, &, M(k”Bo)y 2, For illustration this has been inap-
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Anisotropy due to mean magnetic field

o global (Robinson Rusbridge, 1970; Montgomery Turner, 1982;
Shebalin et al, 1983; Oughton et al, 1994)

e |ocal (Cho Vishniac, 2000; Milano et al, 2001)

e Stronger than global
e Random coordinate system

e Does not relate directly to spectrum but to higher order
statistics



Local and global anlsotropv measures in 3D 512’\3 MHD
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Limiting effects

Competition of drivers

Specific structure of the energy containing scales
Parallel spectral transfer

Compressive couplings

Sources (shear driving wave particle
interactions...)



Table 1. Parameters for the Compressible and Incompressible Runs

Comparison of spectral and variance anisotropies

Run By  &b/By M B Anisotropy
Spectral Var
2,2
up uy p it /i,
¢27 i 1 0 o0 S — — 0.87
501 1 I 0.15 44.4 5 I M 0.85
s02 1 1 0.5 4 S I M 0.82
503 2 12 0.5 1 S 1 S 0.85
s04 4 14 0.5 1/4 S 1 S 1.2
s05 4 1/4 0.3 1/4 M M 2.0
s06 1 1 0.15 44.4 S 1 1 1.0

Horizontal spaces separate runs with distinct initial data. Run ¢27 is incompressible, ryns s01-s04 (cat
solenoidal {transverse} initial velocity, and runs s05-s06 (category 2) an irrotational (longitudinal) initial
N = 64 Fourier medes are used in each direction, v = 11 = 1/250, and the initially excited wavenumbers lit
and 8. Columns 6-10 summarize the results of the runs in terms of (1) the level of spectral anisotrop
(8, strong; M, moderate; I, isotropic), and (2} the average of the variance ratios (for ¢ > 2). All runs
spectral anisotropy in o, b, and j.
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ure 2. Anisotropy angles as a function of time for u,w, b, and j. Note the approximate
ilarity between the incompressible and compressible results. Angles are in degrees.

* Incompressible MHD does not collapse
to “Alfven mode”
e Compressible MHD evolves towards
low parallel variance
e Spectral anisotrpy Kperp>Kpar
always occurs



Conclusions/points of discussion

Many factors can cause/limit anisotropy
Variance anisotropy is not a property of incompressible MHD
Spectral anisotropy is a function of Reynolds number

Compressive modes sometimes/always much more isotropic than incomp.
Modes

IN MODELING: better NOT make extreme assumptions at the onset!

IN MODELING: better to not make extreme assumptions about anisotropy
except maybe in extreme circumstances

IN MODELING: how can local anisotropy be built in? It's a higher order
statistic...do we need it ?
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