

Large-Eddy Simulation: state-of-the-art (with emphasis on multiscale methods)

Pierre Sagaut pierre.sagaut@upmc.fr

Institut d'Alembert, UMR 7190 Université Pierre et Marie Curie – Paris 6

GTP Workshop « LES of MHD turbulence » NCAR, Boulder, Colorado 20-23 May, 2013

Outline

- 1. Turbulence as a multiscale phenomenon: a brief reminder
- 2. Capturing turbulence features: grid resolution, scale separation
- 3. Multiscale/adaptive grid DNS/LES methods: a survey
- 4. Some open issues

Turbulence dynamics: Kinetic energy cascade

Is Direct Numerical Simulation possible ?

Number of grid points:

$$\left(\frac{Lx}{\Delta x}\right)^3 \sim \left(\frac{L}{\eta}\right)^3 \sim (Re_L^{3/4})^3 \sim Re_L^{9/4}$$

Number of time steps:

$$\left(\frac{T}{\Delta t}\right) \sim \left(\frac{L_T}{\tau_\eta}\right) \sim Re_L^{1/2}$$

Total complexity:

$$Re_L^{1/2} imes Re_L^{9/4} = Re_L^{11/4}$$

Small scale removal

Control cell energy budget: Fourier space

NC

Simplified view: schematic direct cascade

Production

Physical/Fourier space energy budget

Conformal/non-conformal mapping

N-1 N N+1

Multiscale/adaptive grid DNS/LES methods

LES: the key observation

PHYSICAL SPACE

FOURIER SPACE

LES: a deeper analysis

$$\frac{\partial u}{\partial t} + F(u, u) = 0$$

u: exact turbulent solution

$$\frac{\delta u_h}{\delta t} + F_h(u_h, u_h) = 0$$

 u_h : discrete solution

LES:

- discrete solution
 projection error
- approximate integro-differential operators
 discretization error
- unresolved scales
 resolution error

LES : Modified PDE Model

Discrete numerical model

Implicit non-linear couplings in LES CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (u_h, u_h) ϵ_r \mathcal{U}_h \mathfrak{e}_h

E.g. Numerical and VMS viscosities

(Ciardi & al., JOT, 2006)

What is the optimal LES solution ?

Definition of the optimal LES solution

 $\min(e_{\pi} + e_h + e_r) = \min(e_{\pi})$

 $e_h + e_r = 0$

Implicit LES:

•No physical subgrid model

•Ad hoc scheme

 $e_h = e_r = 0$

Classical LES:

- •Explicit subgrid model
- •Neutral scheme

Functional modelling: key assumptions

Functional models:

- Surrogate for the mean interaction
- *Hyp 1*: Kinetic energy balance is most important
- *Hyp 2*: TKE cascade is dominant \rightarrow dissipative action in the mean

- *Hyp 3*: An eddy-viscosity model is relevant

If there is something more occuring, this is not a small/subgrid scale !

A priori constraints for subgrid models

- Consistency (1) : subgrid model should vanish in fully resolved regions
- Consistency (2) : some subgrid scale effects must be recovered (e.g. net kinetic energy transfer associated with kinetic energy cascade)
- Consistency (3) : symmetries of the exact LES equations must be preserved
- Subgrid models must be 'user friendly'

• Subgrid tensor model:

$$S \simeq -2\mathbf{v}_t \mathcal{S} \quad \mathcal{S} = \frac{1}{2}(\nabla \bar{u} + \nabla^T \bar{u})$$

• Subgrid viscosity model

- Remarks:
 - Reminiscent of von Neumann Richtmyer artificial viscosity for shock capturing (1950)
 - Belongs to Ladyzenskaja's class of viscosity
- Subgrid model constant must be tuned to enforce the desired rate of kinetic energy dissipation

• Canonical analysis:

Infinite inertial range

$$E(k) = K_0 \varepsilon^{2/3} k^{-5/3}$$

Local equilibrium: production = dissipation
 ⇒« Universal value »:

$$C_S = \frac{1}{\pi} \left(\frac{3K_0}{2} \right)^{-3/4} \simeq 0.18$$

Accuracy in isotropic turbulence

- Satisfactory recovery of E(k) at infinite Reynolds number (non-dissipative numerical method, cutoff within inertial range)
- Not coherent with realistic TKE spectrum, i.e. does not account for

$$L/\Delta$$
 and η/Δ

Slow asymptotic convergence !

• Usual asymptotic value C=0.18 valid if

$L/\Delta > 10$ and $\Delta/\eta > 100$

therefore

 $L/\eta > 1000 \Longrightarrow Re_L > 10^4$

More general/self-adpative subgrid models

• Local automatic tuning of C_S

- Germano's identity ⇒ least square optimization
- Kolmogorov equation \Rightarrow dissipation optimization (*Shao et al.*)
- Improved localness in terms of wave number
 - Variational Multiscale methods
 - Filtered models
- Remark: all these approaches are based on a *test filter*
 - The resolved field is decomposed into spectral bands
 - Features of turbulence are used/extrapolated to calibrate the subgrid models

Schematic view of test filtering

Key idea: least-squre optimization of SGS model constant using the (exact) Germano identity

Subgrid modelling:

$$\tau = C_d f(\bar{u}, \bar{\Delta})$$
$$T = C_d f(\tilde{\bar{u}}, \tilde{\bar{\Delta}})$$

Dynamic Models

Residual definition

$$R = L - C_d \underbrace{\left(f(\tilde{\bar{u}}, \tilde{\Delta}) - \tilde{f}(\bar{u}, \bar{\Delta})\right)}_{M}$$

Least-square minimization:

$$\frac{\partial R^2}{\partial C_d} = 0$$

Solution:

$$C_d = \frac{L:M}{M:M}$$

[Adams et al., Phys. Fluids, 1999, 2001]

• Key idea: find an approximate 'de-filtered' field

$$u^{\star} \equiv G_l^{-1}(\bar{u}) \sim u + O(\Delta^l)$$

- Remarks
 - Developed using the convolution filter model
 - No underlying assumption on flow physics
 - Issue: how to find the adequate approximate inverse if the exact filtering operator is not known ?

Cont'd

• ADM momentum equation

 $\frac{\partial \bar{u}}{\partial t} + \nabla . (\overline{u^* u^*}) + \nabla \bar{p} - \nu \nabla^2 \bar{u} = -\chi (I - G_l^{-1} \circ G) \bar{u}$ Non linear term computed using the surrogate field: does not account for u'
Dissipative regularization term used to prevent energy pile-up in resolved scales (net drain associated with kinetic energy cascade)

Implementation of the inverse filter

• Approximate iterative deconvolution

$$G^{-1} = (I - (I - G))^{-1} = \sum_{p=0,+\infty} (I - G)^p$$

$$G_l^{-1} = \sum_{p=0,l} (I - G)^p$$
Truncated expansion

- Remarks
 - Known as the van Cittert deconvolution in signal processing
 - l=5 in is enough in practice (Stolz & Adams)
 - l=1 : Bardina's scale-similarity model
 - Obviously dependent on the evaluation of G
 - Can be replaced by other methods: conjugate gradient, ...

Cont'd

• Approximate differential expansions

$$\bar{u}(x,t) = \int G(\Delta, |x-y|)u(y,t)dy$$

 $u(y,t) = u(x,t) + \sum_{k=1,+\infty} \frac{(y-x)^k}{k!} \frac{\partial^k u}{\partial x^k}$

Convolution filter model

Regularity hypothesis

$$\bar{u}(x,t) = \left(I + \sum_{k=1,+\infty} \frac{(-1)^k}{k!} \Delta^k M_k \frac{\partial^k}{\partial x^k}\right) u$$
$$u(x,t) = \left(I + \sum_{k=1,+\infty} \frac{(-1)^k}{k!} \Delta^k M_k \frac{\partial^k}{\partial x^k}\right)^{-1} \bar{u}$$

• Usual form: Truncated explicit Taylor series expansion

$$u(x,t) = \left(I - \sum_{k=1,l} \alpha_k \frac{(-1)^k}{k!} \Delta^k M_k \frac{\partial^k}{\partial x^k}\right) \bar{u}$$

- Alternative forms:
 - Padé approximant
 - 'Best' polynomial projection (minimax, least-square, ...)
- Remarks
 - $l=2 \Rightarrow$ Clark's gradient model (= tensor diffusivity model)
 - Anti-diffusion in some directions

Filtering Implementation

[Matthew et al., Phys. Fluids, 2003]

ADM can be recast as an explicit-filter-based ILES method

Exact LES eq.
$$\frac{\partial \bar{u}}{\partial t} + G \star \nabla \cdot f(u) = 0$$

ADM eq.
$$\frac{\partial \bar{u}}{\partial t} + G \star \nabla \cdot f(u^{\star}) = 0$$

$$\Longrightarrow G \star \left(\frac{\partial u^{\star}}{\partial t} + \nabla \cdot f(u^{\star}) \right) = G \star \frac{\partial u^{\star}}{\partial t} - \frac{\partial \bar{u}}{\partial t} \simeq 0$$

Cont'd

• Three-stage procedure

1
$$u^{\star(n)} = G_l^{-1} \star \bar{u}^{(n)}$$

2 $u^{\star(n+1)} = u^{\star(n)} + \Delta t \frac{\partial u^{\star}}{\partial t}$
3 $\bar{u}^{(n+1)} = G \star u^{\star(n+1)}$

Just need 1 DNS step, 1 filtering step, 1 defiltering step

• Two-stage procedure (= explicit linear filtering step in DNS code !)

- Just need 1 DNS step, 1 filtering step
- use H^2 instead of *H* to account for regularization if $\chi = 1/\Delta t$

Wall Model for LBM-LES

Channel flow at $Re_{\tau} = 2003$

Validation on full-scale vehicles

- **Full scale vehicle simulation**
- □ 186 surfaces (2,3 millions surface triangles)
- □ 10 levels of grid refinement, 88.6 millions cells
- $\Box \quad dx_{min}=1.25mm$
- $\Box \qquad 300\ 000\ \text{time steps} \rightarrow 0.96\ \text{sec}$
- U0 = 44.4 m/s
- Wall Model in first cell LES
- LBM-ADM model

Validation on full-scale vehicles

Laguna case : fine band spectra

Clio case : third-octave band spectra, averaged on the whole surface of the side window

Classical LES for engineering applications:

• no production mechanism at subgrid scale (exception : wall models for turbulent boundary layers)

- mostly eddy viscosity models
- no account for anisotropy at small scales
- sometimes eddy-viscosity tuning for physical effects on non-linear cascade (e.g. stable stratification
- Improvement of the results: grid refinement !

A few existing AMR-LES methods

Terracol's multilevel LES

[Terracol et al., JCP 167, 2001] [Terracol et al., JCP 184, 2003] [Terracol & Sagaut, Phys. Fluids 15(12), 2003]

Hoffman's Adaptive Grid DNS/LES

http://www.csc.kth.se/~jhoffman/Johan_Hoffman_KTH/Home.html

• **Wavelet methods**: CVS (Schneider, Farge), SCALES (Vasilyev, De Stephano, Goldstein)

[De Stephano & Vasilyev, JCP 238, 2013] [De Stephano & Vasilyev, JFM 695, 2012] [Jarhul et al., Numer. Heat Transfer B 61, 2012] [De Stephano & Vasilyev, JFM 646, 2010] [Schneider & Vasilyev, Ann. Rev. Fluid Mech., 2010] [De Stephano et al., Phys. Fluids 9(11), 2008] [Goldstein et al., Phys. Fluids 6(71), 2005] [Goldstein & Vasilyev, Phys. Fluids 16(7), 2004]

E(ĸ)

Multilevel splitting: schematic view

Related issues:

- time cycling between grids
- reconstruction/restriction operators
- adequate numerical methods
- adequate turbulence models

Wavelet decomposition

Coherent part

$$\mathbf{u}_{>}(\mathbf{x}) = \sum_{l \in L_{0}} c_{l}^{0} \phi_{l}^{0}(\mathbf{x}) + \sum_{j=0}^{+\infty} \sum_{m=1}^{2^{n}-1} \sum_{\substack{k \in \mathcal{K}^{m,j} \\ |d_{k}^{m,j}| > \epsilon}} d_{k}^{m,j} \psi_{k}^{m,j}(\mathbf{x})$$

UPMC

SCALES method governing equations

$$\frac{\partial \overline{\mathbf{u}}^{>\epsilon}}{\partial t} + \nabla \cdot \left(\overline{\mathbf{u}}^{>\epsilon} \otimes \overline{\mathbf{u}}^{>\epsilon}\right) = -\nabla \overline{p}^{>\epsilon} + \nu \nabla^2 \overline{\mathbf{u}}^{>\epsilon} - \nabla \cdot \overline{\tau}^{>\epsilon}$$

$$\overline{\tau}^{>\epsilon} \equiv \overline{\mathbf{u} \otimes \mathbf{u}}^{>\epsilon} - \overline{\mathbf{u}}^{>\epsilon} \otimes \overline{\mathbf{u}}^{>\epsilon}$$

$$\overline{\tau}^{>\epsilon} = -2\nu_{\text{scales}} \overline{\mathbf{S}}^{>\epsilon}, \quad \overline{S}^{>\epsilon} = \frac{1}{2} \left(\nabla \overline{\mathbf{u}}^{>\epsilon} + \nabla^T \overline{\mathbf{u}}^{>\epsilon}\right)$$

$$\nu_{\text{scales}} = C_S \epsilon^2 |\overline{\mathbf{S}}^{>\epsilon}|.$$

Dissipation in isotropic turbulence

Computed energy spectrum

Computed energy spectrum

UPARISUNIVERSITAS

[Huerre & Monkewitz, Ann. Rev. Fluid Mech, 1990]

Hoffman's AMR DNS/LES

Key idea: error dynamics interpreted using (non)linear stability theory

Figure 1 Sketches of typical impulse responses. Single traveling wave: (a) stable, (b) convectively unstable, (c) absolutely unstable. Stationary mode: (d) stable, (e) absolutely unstable. Counterpropagating traveling waves: (f) stable, (g) convectively unstable, (h) absolutely unstable.

Key idea: convective nature of error in noise amplificator flows

Hoffman's error cost function

Time-averaged Drag function (local/surfacic formulation)

$$F(\sigma(\mathbf{u}, p)) \equiv \frac{1}{T} \int_{I} \int_{\Gamma_0} (\sigma \cdot \mathbf{n}) \cdot \phi \, dS \, dt$$

Time-averaged Drag function (non-local/volumic formulation)

$$\begin{split} F(\sigma(\mathbf{u}, p)) \equiv & \frac{1}{T} \int_{I} \left(\langle \dot{\mathbf{u}} + \nabla \cdot (\mathbf{u} \otimes \mathbf{u}), \mathbf{\Phi} \rangle + \langle p, \nabla \cdot \mathbf{\Phi} \rangle \right. \\ & \left. + 2\nu \left\langle S(\mathbf{u}), S(\mathbf{\Phi}) \right\rangle + \left\langle \nabla \cdot \mathbf{u}, \Theta \right\rangle \right) dt \end{split}$$

Hoffman's error cost function

Time-averaged Drag function (volumic discrete formulation)

$$F_{h}(\sigma(\mathbf{u}_{h}, p_{h})) \equiv \frac{1}{T} \int_{I} \left(\langle \dot{\mathbf{u}}_{h} + \nabla \cdot (\mathbf{u}_{h} \otimes \mathbf{u}_{h}), \mathbf{\Phi} \rangle + \langle p_{h}, \nabla \cdot \mathbf{\Phi} \rangle \right.$$
$$\left. + 2\nu \left\langle S(\mathbf{u}_{h}), S(\mathbf{\Phi}) \right\rangle + \left\langle \nabla \cdot \mathbf{u}_{h}, \Theta \right\rangle \right.$$
$$\left. + SGS(h, \mathbf{u}_{h}, p_{h}, \mathbf{\Phi}, \Theta) \right) dt$$

Drag error cost function

$$\operatorname{Err}(h_r, \lambda) = |F(\sigma(\mathbf{u}, p)) - F_h(\sigma(\mathbf{u}_h, p_h))|$$

Optimal AMR: adjoint-based grid refinement

$$-\frac{\partial\phi}{\partial t} - \mathbf{u}\cdot\nabla\phi = \nabla\theta + \nu\nabla^2\phi - \nabla\mathbf{u}_h\cdot\phi$$

Drag error cost function

$$|F(\sigma(\mathbf{u},p)) - F_h(\sigma(\mathbf{u}_h,p_h))| = \left|\sum_{i=1,N} \operatorname{Err}_h(i) + \sum_{i=1,N} \operatorname{Err}_r(i)\right|$$

Drag error cost function: local discretization error

$$\operatorname{Err}_{h}(i) = \frac{1}{T} \int_{I} \left(\langle \dot{\mathbf{u}}_{h} + \nabla \cdot (\mathbf{u}_{h} \otimes \mathbf{u}_{h}), (\phi_{h} - \mathbf{\Phi}) \rangle_{i} + \langle p_{h}, \nabla \cdot (\phi_{h} - \mathbf{\Phi}) \rangle_{i} + 2\nu \left\langle S(\mathbf{u}_{h}), S(\phi_{h} - \mathbf{\Phi}) \right\rangle + \left\langle \nabla \cdot \mathbf{u}_{h}, (\theta_{h} - \Theta) \rangle_{i} \right) dt$$

Drag error cost function: resolution/modelling error

$$\operatorname{Err}_{r}(i) = \frac{1}{T} \int_{I} \operatorname{SGS}(h, \mathbf{u}_{h}, p_{h}, \boldsymbol{\Phi}, \Theta)_{i} dt$$

Several solutions for resolution error definition

Drag error cost function: resolution/modelling error

$$\operatorname{Err}_{r}(i) = \frac{1}{T} \int_{I} \operatorname{SGS}(h, \mathbf{u}_{h}, p_{h}, \boldsymbol{\Phi}, \Theta)_{i} dt$$

DNS as a target

$$\mathrm{SGS}(h, \mathbf{u}_h, p_h, \boldsymbol{\Phi}, \Theta)_i = \langle \mathcal{F}_{\mathrm{LES}}, \boldsymbol{\Phi} \rangle_i$$

$$(\mathbf{\Phi}, \Theta) = (\phi_h, \theta_h)$$

 $(\mathbf{\Phi}, \Theta) = (\mathbf{u}_h, p_h)$

Test on sugrid force (weak form)

Test on sugrid dissipation

Ideal filtered DNS as a target $SGS(h, \mathbf{u}_h, p_h, \mathbf{\Phi}, \Theta)_i =$

 $\langle \nabla \cdot \tau_{\text{LES}} - \mathcal{F}_{\text{LES}}, \mathbf{\Phi} \rangle_i$ $\langle \tau_{\text{LES}}, S(\mathbf{\Phi}) \rangle_i - \langle \mathcal{F}_{\text{LES}}, \mathbf{\Phi} \rangle_i$

UPARISUNIVERSITAS

Engineering applications

Adjoint solution

Engineering applications

Engineering applications

AMR vs. LES (modelling)

	pros	cons
AMR	 no physical modelling fully general reduced numerical error 	 error estimate needed no fully general error estimate non-conformal grids conservation properties dynamic load distribution on // computers arbitrary maximum resolution (high-Re DNS ?)
LES (modelling)	 static grid (general case) huge effort over 40 years some reliable/robust methods are available 	 empirical physical modelling models limited to cascade +dissipation: no production models restricted to almost isotropic subgrid physics empirical handling of numerical errors

- Hybrid LES/AMR methods seem to be preferred in engineering
- Optimal weight grid/model complexity still unknown
- How to distinguish between numerical and modelling errors ?
- How to capture governing/production mechanisms at very small scales (e.g. chemical reaction at molecular scales) ?

Bibliography

- P. Sagaut, S. Deck, M. Terracol « Multiscale and multiresolution approaches in turbulence, 2nd edition », Imperial College Press, 2013
 - In general presentation including multiscale RANS, LES, hybrid RANS/LES, adaptive basis methods ...

- P. Sagaut « Large-Eddy simulation for incompressible flows 3rd edition», Springer, 2005
 - ⇒a general introduction to all LES issues/models/approaches incuding RANS/LES and the scalar case, fundamentals of numerical methods not discussed
- B.J. Geurts « Elements of Direct and Large Eddy Simulation », Edwards, 2003
 - Oan introduction to DNS and LES, fundamentals of numerical methods are recalled
- M. Lesieur, O. Métais, P. Comte « Large-Eddy Simulations of turbulence », Cambridge University Press, 2005
 - San overview of the LES works of the authors. Nicely illustrated, with short introduction to LES for compressible flows
- F. Grinstein, B. Rider, L. Margolin (eds.) « Implicit LES: computing turbulence dynamics », Cambridge University Press, 2007
 - In extensive presentation of the Implicit LES approach.
 Both theoretical analysis of ad hoc numerical schemes and results are provided
- E. Garnier, N. Adams, P. Sagaut « LES for compressible flows », Springer, 2009
- Sa general introduction to all LES issues/models/approaches incuding RANS/LES for compressible flows, numerical issues are discussed

- L.C. Berselli, T. Iliescu, W.J. Layton « Mathematics of large-eddy simulation of turbulent flows », Springer, 2006
 - a general presentation of mathematical results dealing with numerical analysis of LES
- V. John « Large eddy simulation of turbulent incompressible flows », Springer, 2004 (Lecture notes in computational science and engineering Vol. 34)
 - Some overview of mathematical results dealing with LES obtained by the author for a class of subgrid models