

Self-Gravitating Supersonic MHD Turbulence

GTP Workshop on MHD LES, Session VI

Wolfram Schmidt

with thanks to

Ann Almgren, Harald Braun, Jörg Büchner Jan F. Engels, Christoph Federrath, Muhammad Latif, Emanuel Lévêque, Jens Niemeyer, Dominik Schleicher and CRC 963, GWDG, HLRN, yt-project

Wolfram Schmidt Universität Göttingen Self-Gravitating Supersonic MHD Turbulence

Application I: Star-Forming Clouds

ILES of Forced MHD

Collins et al. (2012):

- AMR simulation (4 levels, 16 cells per Jeans length)
- PLM (Li et al. 2008), CT method, $Ma_{rms} \approx 9$

Self-Gravitating Supersonic MHD Turbulence Jniversität Göttingen Wolfram Schmidt

Magnetic field PDFs:

- field fluctuation b
- peaks given by β_0
- widest tail for weakest field

Velocity power spectra:

- no evolution due to gravity
- Steeper slope for lower β_0

Supersonic MHD Turbulence Jgen Wolfram Schmidt ersität Self-Gravitatin

Local Magnetic Field Amplification

• PDE for the **magnetic pressure** follows from compressible induction equation (ideal MHD):

$$\frac{\mathrm{D}}{\mathrm{D}t}\left(\frac{B^2}{8\pi}\right) = \frac{1}{4\pi}\left(B_i B_k S_{ik}^* - \frac{2}{3}B^2 d\right)$$

- Two contributions:
 - Amplification by **shear** (dynamo action)
 - Gravitational and shock compression
- Can be positive or negative
 - Compute averages of positive and negative contributions for given overdensity ρ / ρ_0 = 1 + δ

Self-Gravitating Supersonic MHD Turbulence

niversität Göttingen

Wolfram Schmidt

$\beta \approx 0.034$ and 0.21 (WS, Collins, Kritsuk 2013)

Magnetic field amplification:

- initially saturation
- balance between
 shear-induced
 and compressive
 amplification
- stronger effect for higher β
- net amplification at high densities (collapsing gas)

Supersonic MHD Turbulence ngen **Wolfram Schmidt** rersität (Self-Gravitatin

Application II: The First Stars in the Universe

• Direct collapse scenario:

- dark matter halos of mass ~ $10^7 M_{\rm sun}$
- fragmentation due to atomic gas cooling
- collapse produces prestellar cores (1000 $M_{\rm sun}$)
- Might lead to the formation of seed black holes that can grow to **supermassive BHs**
- Deep zoom-in simulations with Enzo (Latif, Schleicher, WS, and Niemeyer 2013):
 - 27 levels of refinement
 - follows collapse down to 0.25 AU
 - MHD runs
 - HD runs: comparison LES to ILES

Self-Gravitating Supersonic MHD Turbulence Universität Göttingen Wolfram Schmidt

Mass density, MHD runs

Self-Gravitating Supersonic MHD Turbulence

Universität Göttingen

Wolfram Schmidt

Magnetic field, MHD runs 10⁻⁷ 10⁻⁵ 10⁻⁶

10⁻⁵

10⁻⁶

Magnetic field amplification:

- no amplification at low resolution
- Amplification at high densite s for ≥ 64 cells per λ_J

What's going on here?

- Turbulence is **driven by self-gravity** of the gas
- Energy injection on length scales $l \ge \lambda_{\rm J}$
- We barely touch the turbulent cascade in these simulations would need $\Delta \ll \lambda_{\rm J}$
- **Growth rate** of *B* due to dynamo can be estimated by (Schober et al. 2012):

$$1/\tau_B \sim \frac{V}{\lambda_J} \operatorname{Re}^{1/2} \sim \frac{V}{\lambda_J} \left(\frac{\lambda_J}{l_K}\right)^{2/3}$$

• But in ILES that do not resolve the physical dissipation scale, the dynamo is driven from the smallest resolved length scales $l \sim \Delta \gg l_{\rm K}$

Self-Gravitating Supersonic MHD Turbulence ngen Wolfram Schmidt ersität (

Subgrid Scale Model for Hydrodynamical Turbulence

- Based on Germano (1992) decomposition
- A priori tests of closure for compressible turbulence (Schmidt et al. 2006, 2011)

$$\frac{\partial}{\partial t}\rho + \nabla \cdot (\mathbf{u}\rho) = 0$$

$$\frac{\partial}{\partial t}(\rho \mathbf{u}) + \nabla \cdot (\rho \mathbf{u} \otimes \mathbf{u}) = -\nabla \underbrace{\left(P + \frac{2}{3}\rho K\right)}_{\text{eff. pressure}} + \underbrace{\nabla \cdot \tau_{\text{sgs}}^{*}}_{\text{nondiag. stresses}} + \rho(\mathbf{g} + \mathbf{f}_{\text{ext}})$$

$$\frac{\partial}{\partial t}\rho E + \nabla \cdot (\rho \mathbf{u}E) = -\nabla \cdot \left[\mathbf{u}\left(P + \frac{2}{3}\rho K\right)\right] + \nabla \cdot (\mathbf{u} \cdot \tau_{\text{sgs}}^{*})$$

$$+ \rho \mathbf{u} \cdot (\mathbf{g} + \mathbf{f}_{\text{ext}}) \underbrace{-\Lambda + \Gamma}_{\text{radiative}} \underbrace{-\Sigma + \rho \epsilon}_{\text{turbulent}}$$

$$\frac{\partial}{\partial t}\rho K + \nabla \cdot (\rho \mathbf{u}K) = \mathfrak{D} + \Sigma - \rho\epsilon$$

ILES vs LES

	ILES	LES
diffusivity (SGS)	$v_{\rm num} = v_{\rm turb}$?	e.g. $v_{\rm sgs} = C_{\rm v} \Delta K^{1/2}$
dissipation	instantaneous (kin. energy to heat)	intermediate reservoir $ ho K$
turbulent pressure (SGS)	none	$P_{\rm sgs} = \frac{2}{3}\rho K$
dynamo	increases with $1/\Delta$	closure for αB
AMR	numerical cooling/heating	energy bookkeeping $(\frac{1}{2}\rho u^2 \leftrightarrow \rho K)$

Self-Gravitating Supersonic MHD Turbulence Universität Göttingen Wolfram Schmidt