Summary

Challenges & Building Blocks

 Aluie, Blackman, Boldyrev, Brandenburg, Brun, Calkins, Cambon, Cossette, Daughton, Jenko, Julien, Lesur, King, Matthaeus, Pouquet, Rempel, Stone, Schmidt, Shebalin, Strugarek, Sullivan, Tobias, Uzdensky, Velli, Yokoi

LES Applications & Success Stories

 Augustson, Brun, Cossette, Fan, Kitiashvili, Kosovic, Lesur, Matthaeus, Miura, Nelson, Petrosyan, Pouquet, Rempel, Schmidt, Smolarkiewicz, Stone, Sullivan, Velli

New Directions

 Brandenburg, Brun, Matthaeus, Pouquet, Rast, Schmidt, Sondak, Stone, Vasilyev, Yokoi

Open issues

- Horror stories when does ILES/ND not work?
 - Warning signs?
- What metrics do we use to decide if an LES/SGS model is successful?
- Do LES have to model SGS physics? What SGS approaches are most promising (diffusive/self-similar/diagnostic equations)?
- What (semi-) universal physics can we exploit?
 - self-similarity/local transport? or scale separation?
 - dynamic alignment & small-scale anisotropy?
 - helicity constraints?
 - current sheets: instability and intermittent dissipation/reconnection?
 - small-scale flux amplification & transport in dynamos

LES-MHD Challenge

MRI

- MRI no guide field Pm < 1</p>
- Asymptotic Pm >> 1

Solar/stellar convection & dynamos

- Reproduce a "DNS" convective dynamo with a lower-res LES?
- Convergence/sgs sensitivities of cyclic convective dynamos

General

ILES/ND in shear flows