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The rain cycle

Evaporation of water into an air mass.
Cooling of the air mass causes supersaturation.

Supersaturation leads to nucleation of water droplets
onto dust particles/salt grains, creating clouds.

The microscopic water droplets in clouds grow by
collisions or other processes, until they are heavy
enough to fall at a significant rate.

Falling droplets can sweep up smaller ones and
experience a runaway growth. They become rain
drops.

The rain drops sweep the excess moisture our of the
air mass.



Laboratory models

There are studies of water vapour in large tanks.
These are too small to produce rainfall.
T

nere are reports of rain cycles in liquid sodium
reactor cooling circuits.

« An alternative approach, pursued by Juergen Vollmer
and co-workers, uses two partly miscible liquids in a
test-tube. The temperature is varied smoothly to
decrease miscibility. Material comes out of solution in
the form of small droplets. These grow and move
towards the interface as 'rain'.

The rain events are seen as in increase Iin turbidity of
the mixture. They are roughly periodic in time, with a
period which increases as the rate of cooling
decreases.



The Goettingen experiment

Uses water and isobutoxyethanol, which are not fully
miscible above 7. = 25.51°C

temperature control:
slow heating
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A camera and image-processing software determines the
distribution of droplet sizes. Wide range of heating rates and
temperatures, allow discriminating test of theories.



Goettingen experiment - results

Time variation of droplet Period as a function of
size distribution: cooling rate (lower layer):
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A model for test-tube rain

After a 'rain' event, negligible supersaturation.
Heating causes supersaturation, nucleation on dust.
The microscopic droplets grow by Ostwald ripening.

When droplets are large enough, they drift towards
the interface at a significant rate.

Larger droplets catch up with smaller ones,
coalesce, then move faster. There is a finite-time
singularity.

The 'rainfall' sweeps away the excess material, cycle
can start again.

- All this is similar to 'drizzle’ from stratus clouds.



Ostwald ripening

Consider water droplets in air. The smallest droplets have
the highest Laplace pressure. They need a higher level of
supersaturation to prevent evaporation. Water vapour
from the smallest drops condenses onto the larger ones.

Laplace

pressure:
27

Ap = —
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The mechanism is more rapid than collisions due to
Brownian motion of droplets, because molecules diffuse

faster than droplets.



Lifshitz-Slezov theory

The surface of a droplet is in contact with vapour at a
higher concentration:
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The concentration obeys Laplace's equation. The
concentration gradient at the surface leads to diffusive
deposition, which increases the radius:
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Droplets smaller than @y = o/s shrink and evaporate.



Simplified model for droplet growth

The largest droplets are the important actors. Neglect the

evaporation term, add a term for growth by sweeping up

smaller particles. Vertical velocity due to buoyancy is:
2Apg 5

—(1- = R~

U
9 pv
Sweeping up material leads to additional term in equation for
growth of radius:
da Do ¢
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Initial growth is by Ostwald ripening, leading to
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Prediction of period

Growth by Ostwald ripening, collisional term is comparable,

at time 1, . 03 ~ Dot
Then a runaway growth with finite-time singularity, time ¢,
At =t + 1o

Growth equation:
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Comparison with experiment

Data on water/i-BE system is o 20v®e  29Vin o

available. T RT
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FIG. 3: Plot of temperature dependence of At £37, for the upper (a) and the lower (b) layer. The solid line is the theoretical
prediction, eq. (8), with &« = 0.71. When plotting At against £ (insets) the scatter identiﬁLa the considerable {leandane of the
period on the material parameters. The colors and symbols encode different heating rates .., black stars, £ < 6 x 107 %57 !; blue
crosses, £ < 1.3 x 107557 1; cobalt circles, £ < 3 x 10~%s~!; green triangles, £ < 6 x 107557 !; red squares, £ < 3 x 1'[]'_'1 C
and magenta diamonds, £ = 3 x 10-%s— 1,



Is the theory universally valid?

Agreement is equally good for methanol and hexane,
with the same power-law dependence on temperature
(a consequence of universality of critical exponents).
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FIG. 2. Plot of temperature dependence of At £3/7, for the upper and the lower layer of a mixtures of (a) IBE and water and (b) methanol
and hexane, respectively. The respective solid lines are the theoretical prediction, eq. (2), with {a) & = (.71 and (b) & = 1. The colors and
symbols encode different heating rates £: black stars, £ < 6 x 107" s™"; blue crosses, £ < 1.3 x 107" s~ "; cobalt circles, £ < 3x 107 s™";
green triangles, £ < 6 x 107" s~ "; red squares, £ < 3 x 107* s~ "; and magenta diamonds, £ = 3 x 107*s~". In response to the increase of
¢ the lag time typically drops by an order of magnitude, ranging between a few minutes for the largest values of £ till several hours for small

values of £ and #. (Raw data are shown in the supplementary material. )



Critical exponents

The interfacial tension, density contrast and mutual
diffusion coefficient all vanish at the critical point, with
universal exponents in the three-dimensional Ising
universality class:

Ap ~6° 320327
v~ 6% 1~ 0.630
D~ 60" ~=x~1237

This explains the observed power-law dependence of
the temperature-dependence of the coefficient:
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Any lessons for real clouds?

Ostwald ripening operates in real clouds. It gives a robust
timescale, depending only upon temperature.

(a(t)) = (%Dﬁf)

What does this imply for real clouds (at 10°C)?
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Growth to 50 ym takes days by Ostwald ripening. This is too
slow to be significant. Another mechanism is required.



Summary

We have the first quantitative description of a precipitation
cycle. There is a surprising scaling with the cooling rate:
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The theory involves Ostwald ripening, which allows
competitive growth of droplets without collisions.

In terrestrial atmospheric clouds, collisions are not
sufficiently frequent and Ostwald ripening is too slow.

Model experiments on convective ripening should be a
promising direction for future work.
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