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Dispersed multiphase flows
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Overview

Range of scales
e Reynolds number: ratio of viscous timescale to inertial timescale
Re, = ME
m
@ Cloud: Rey, ~ 0(10°) — 0(10°)
@ Human respiratory system:  Re, ~ 0(107") — 0(10%)

@ Blood flow: Re, ~ 0(107%) = 0(10%)

@ Microfluidic devices: Re, ~ 0(107%) - 0(1)
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Overview

Range of scales

e Reynolds number: ratio of viscous timescale to inertial timescale

Re, = pu—ﬁ Rey = P‘:j'Y

@ Cloud: Rey, ~ 0(10°) — 0(10°)
a~ 0(1)-0(10")um, Re, ~ 0(107") —0(10)

@ Human respiratory system:  Re, ~ 0(107") — 0(10%)
a < 0(10)um, Re, ~ 0(1072) = O(1).

@ Blood flow: Re, ~ 0(107%) = 0(10%)
a~ O(1)um, Re, ~ 0(107%) = 0(1).

@ Microfluidic devices: Re, ~ 0(107%) - 0(1)
a~ O(1)um, Re, ~ 0(107%) - 0(107")

e Stokes layer thickness: Is; ~ 1/Re,
= Particle-scale dynamics in Stokes regime,
while bulk flow can be Stokes to Turbulent flow.
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Examples of phase changes in dispersed flows

e Sea-atmosphere interaction e Sediment transport

Ouriemi et al. (2009)

Barenblatt (2009)

@ Solid boundary

@ Boundary layer of

concentrated suspensions

@ Dilute turbulent dispersed flows Tripathi & Acrivos (1999)
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Overview

Outline

@ Overview

@ Dilute to semi-dilute suspension flows
@ Finite-size effect
@ Particle-pair hydrodynamics

© Concentrated suspension flows
@ Stokes suspensions

@ Finite Re,, suspensions

© Conclusions
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Dilute to semi-dilute suspension flows Finite-size effect

Review of Lagrangian point-particle model'

e Equation of motion for a spherical particle in unsteady flow (Maxey & Riley 1983):

D 1
v = (mp — mf)g—l—mfl _md {V—u - Eazvzu}

— 6mau {Q +a I —g[m/(z — 7—)]*1/2[17'}

"Balachandar & Eaton ARFM (2010)
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Dilute to semi-dilute suspension flows Finite-size effect

Review of Lagrangian point-particle model'

e Equation of motion for a spherical particle in unsteady flow (Maxey & Riley 1983):

av
mp— - = (mp —myp)g — 6map(V —u) =F

e Phase-coupling through drag force F;

Ou
pf{g—i-(uV)u} =V .o-F, O',:/:—p(sij-i-zufe,:/

= Understimates turbulent attenuation, particularly for a > 7.
= Unresolved local distortion of flow field around the particles.

'Balachandar & Eaton ARFM (2010)
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Dilute to semi-dilute suspension flows Finite-size effect

Review of Lagrangian point-particle model'

e Equation of motion for a spherical particle in unsteady flow (Maxey & Riley 1983):

av

mp— - = (mp —myp)g — 6map(V —u) =F

e Phase-coupling through drag force F;
Ou
{ o + (- Vu } =V.o-F, o= —p(S,-j + 2upe;;

= Understimates turbulent attenuation, particularly for a > 7.
= Unresolved local distortion of flow field around the particles.

o Bulk deviatoric stress in a suspension of force-free particles (Batchelor 1970)
Yy = 2u(Ey) — *P//u wdV + — Z/ (winj + ujn;)dA

e.g. In the dilute limit: fani —p(uinj + ujn;)dA = 23707r;m3e,7 = Lis...= %qﬁue,j

— Phase-coupling in stress tensor.

"Balachandar & Eaton ARFM (2010)
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Dilute to semi-d

nsion flows Finite-size effect

Force-coupling method?

e Based on truncated regularized multipole expansion

Ou; Ou; _ day ) , . i ’
” (E Tt 3)6/‘) T Ox - zn: [FlAM(r) AT+ Su}ax»AD(r) ’

r=x-Y.

@ F: gravitational acceleration + inertia force — F = F*' + (mp — my,) %

QT = %e,-jka: body torque + inerital torque — T = T + (Ir — ], )"Id—?
@ S surface traction — [ejApdx =0

e Particle motion:

V=_[ux)Aur)dx, Q=1[wkx)Ap(r)dx.

2L omholt & Maxey JCP (2002)
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Dilute to semi-dilute suspension flows

Finite-size effect

Force-coupling method?

e Based on truncated regularized multipole expansion

Ou; Ou; _ day ) , . i ’
” (E Tt 3)6/‘) T Ox - zn: [FlAM(r) AT+ Su}ax»AD(r) ’

r=x-Y.

@ F: gravitational acceleration + inertia force — F = F*' + (mp — my,) %
QT = %e,-jka: body torque + inerital torque — T = T + (Ir — ], )"ld—?
@ S surface traction — [ejApdx =0
e Particle motion:
V=_[ux)Aur)dx, Q=1[wkx)Ap(r)dx.
e Mixture stress: of = gy + > S;Ap
— Mean shear stress in a homogeneous flow
7 = —pr{uig) + 2py (e) + (Sy) =

= —prlujuj) + 2per(eq) (. (Sy) ~ (eq)
c.f. Stokes-Einstein estimate: iy = pu(1 + 2.5¢)

2L omholt & Maxey JCP (2002)
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Dilute to semi-dilute suspension flows Finite-size effect

Dissipation spectra in isotropic turbulence

e Direct numerical simulation of forced isotropic turbulence®

!

1) Re), u € a/n  a/\ Sty Stk
N1 0.06 573 19.44 5436 550 037 0.68 10.1
N2 0.06 587 19.77 5574 3.84 026 033 5.0

*St = Tp/(u’z/s),StK =7p/Tk, ka = /a

* ten Cate et al. (2004)

@ Spectral redistribution of dissipation rate
@ Significant suspension viscosity effect

3Yeo et al. IJMF (2010)
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Dilute to semi-dilu pension flows Finite-size effect
Spectral energy transfer by particle phase

e Energy budget
0 = Ew(k) + T(k) — D(k) + H(K)
— Dipole energy transfer function: H(k) = F {Z e,;jS,;/AD}
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Dilute to semi-dilute suspension flows Finite-size effect

Spectral energy transfer by particle phase

e Energy budget
0 = Ei(k) 4+ T(k) — D(k) + H(k) = Ew(k) 4+ T(k) — D(k) + H(k)
— Dipole energy transfer function: H(k) = F {Z e,;/Sg/AD} = —2pagk*E(K) + H(k)

— Modified dissipation-rate spectra: D(k) = 2(it + ftaga)k*E(k) = 2415 k*E(k)

* Blue line — —2paqak®E(K), H(k) = H(k) — [~2ptaaak*E(k)]
@ fiep = p(1 4 2.5¢) for larger particle, por = pu(1 + 1.75¢) for smaller particle.
@ Turbulence enhancement at smaller scales
@ Dipole energy transfer has a long-range effect
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Dilute to semi-dilute suspension flows Finite-size effect

Kinetic Energy spectra in isotropic turbulence

@ Turbulence enhance at small scales
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ARG HIEHITNIN OISR VAl Particle-pair hydrodynamics
Preferential concentration of inertial particles

e Low inertia approximation: 0 < St < 1 (Maxey 1987a,b)

av
St; =@, )-V)+ W

V() =v(Y,t) = (uw(Y,t) + W) — St (8—u

o +(u+W)-Vu>

1
V~v:715t(e:e7w:w)

— Effective particle velocity field v(x, t) is compressible. Convergence where |e|> > |w|?

Wang & Maxey (1993) Salazar et al. (2008)
= Need to consider particle-pair hydrodynamic interactions.
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Dilute to semi-dilute suspension flows Particle-pair hydrodynamics

Particle-pair interaction

e For a gap ae < Is; ~ a/Re):
— Viscous time scale < Inertial time scale
— Quasi-Stokes problem
- Rapid damping of inertial acceleration
- Coupling between particle motions

e Fundamental modes of Stokes flow

- Particle moving relative to flow
uP(r) ~ 2v

- Particle in 3a shear flow
uP(r) ~ %>
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Dilute to semi-dilute suspension flows Particle-pair hydrodynamics

Particle-pair interaction

e For a gap ae < Is; ~ a/Re):
— Viscous time scale < Inertial time scale
— Quasi-Stokes problem
- Rapid damping of inertial acceleration
- Coupling between particle motions

e Fundamental modes of Stokes flow e hydbrid method: Ayala et al. (2007)

- Particle moving relative to flow A (u+ Z W’y — W
D a dt
u (r) ~ ;V

- Particle in 3a shear flow
uP(r) ~ %>
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Dilute to semi-dilute suspension flows Particle-pair hydrodynamics

Particle-pair interaction

e For a gap ae < Is; ~ a/Re):
— Viscous time scale < Inertial time scale
— Quasi-Stokes problem
- Rapid damping of inertial acceleration
- Coupling between particle motions

e Fundamental modes of Stokes flow e hydbrid method: Ayala et al. (2007)

- Particle moving relative to flow A (u+ Z W’y — W
D a dt
u (r) ~ ;V

- Particle in 3a shear flow
uP(r) ~ %>

- Particle Stress
S = 8%+ S0+ Sot0+ - --
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ARG HIEHITNIN OISR VAl Particle-pair hydrodynamics

Near-field interaction

e Near-field hydrodynamic interaction

— Particle Stress: Sj; ~ %

e Non-hydrodynamic short-range interaction

@ Particle roughness element
@ Polymer coating
@ FElectrostatic repulsion

o - Smart & Leighton (1988)
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ARG HIEHITNIN OISR VAl Particle-pair hydrodynamics

Effects of non-hydrodynamic interaction

e Potential force model: F* = —f(¢)d (e.g. Lennard-Jones potential, electrostatic repulsion)

Abbas et al. (2006)
e Particle Stress
e Equal & opposite repulsive force
— dipole force in the far-field
e Mean shear stress in a homogeneous flow
Ty = —pr(uiu;) + 2py{ey) + ¢(Sy) — n(R @ F')
e Particles in a close proximity:
Si ~ (1/€)uej, —R @ F" > 2pe;
@ A particle doublet generates far-field dipolar flow — additional stress.

@ Dissipation rate can be largely affected by RDF.
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Dilute to semi-dilute suspension flows Particle-pair hydrodynamics

Comments so far

@ Due to the separation of lengthscales, Stokesian dynamics may play a
role in modeling dispersed multiphase flow

@ Particle stress, or suspension viscosity, has a significant effect in
turbulence modulation for a > n

@ Particle stresslet as well as potential force dipole have a long-range effect
and may interact with flow at a scale larger than the particle size.

@ For a better prediction, a dispersed model needs to consider stress
coupling between fluid and particle phases.
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Concentrated suspension flows Stokes suspensions

Background: Concentrated suspensions

e Concentrated Suspensions;

@ average separation distance is smaller than the particle size* (¢ > 0.2)
— Nature: B’layers of density currents/ocean spray, Debris flow, Landslide
— Engineering: Micro-bubble/emulsion DR, CHE products, medical diagnostic device

e multiscale physics: Long-range multi-body ~ O(10)a
Lubrication interactions ~ O(1073)a
= No general theory
= Challenging both in experiments and numerical simulations

@ Non-Newtonian Rheology

4Stickel & Powell ARFM 2005
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Concentrated suspension flows Stokes suspensions

Lubrication-Corrected FCM?

e Multiscale computation of hydodynamic interaction
@ Far-field multibody interaction: Standard FCM
@ Near-field interaction:
= Pairwise-additivity of Lubrication interaction (Brady & Bossis 1988)

o Resistance relation for a particle pair

1 ooyl
Fl A” A12 Bll _BIZ Gll _G12 “jZ _ zwggzi
FZ _ AI2 A]l BIZ 7Bll G12 7G” Ql _ Qoo(Yl)
| = # (Bn)r (312)7 c!! c? H H?? Q2 _ Qoo(yz)
T2 7(BIZ)T 7(BII)T CIZ Cll H12 Hll _E™>
—E>°

® R = RF¥act _ RFCM: |R| — 0 for the gap between particle € > 0.6.
@ A coupled system of far-field and near-field interactions is solved by using a PCG.

@ Almost the same computational cost with the standard FCM,
— O(N, log N,) using a Fourier spectral method.

>Yeo & Maxey JCP (2010)
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Concentrated suspension flows

Stokes suspensions

Characteristics of Concentrated Suspensions

e High-frequency viscosity

— Monte Carlo procedure: Ensemble average of 1000 random configuration

10
8k O FCM-MD )
- @) FCM-LUB
6F A Ladd (1990) R
i K&D (1959)
- Einstein
< 4F B & G (1972)
< |
3 |
o g
2 <0
’\ | T T T T
0 0.1 0.2 0.3 0.4 0.5
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Concentrated suspension flows Stokes suspensions

Characteristics of Concentrated Suspensions

@ Stokes-flow theory:

o Instantaneity
e Reversible
e Newtonian rheology
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Concentr

nsion flows

Stokes suspensions

Characteristics of Concentrated Suspensions

@ Stokes-flow theory:

o Instantaneity
e Reversible
e Newtonian rheology

e Irreversible transition

Yeo & Maxey PRE (2010ab)

DISPERSED MULTIPHASE FLOWS Kyongmin Yeo

@ Experimental Observation:

o History effect
o Irreversibility & Chaos
o Non-Newtonian rheology

o Particle migration

Yeo & Maxey JFM (2011)
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Concentr nsion flows Stokes suspensions

Non-hydrodynamic effects

e Non-hydrodynamic interaction breaks fore-after symmetry!

Sierou & Brady (2002)
= Shear-induced diffusion = Normal stress difference
Ni =011 —0on, N2 =00 — 033
Sierou & Brady (2004) Zarraga et al. (2002)
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Concentrated suspension flows Stokes suspensions

Inhomogeneous suspensions

Suspensions in pressure-driven flow

@ os 0=03 @ 15 $=030

50300y

I
S TEER

1o 15 %

yla

5 yla
e Migration of particles: contradictory to Stokes theory
e Shear-induced migration by Leighton & Acrivos (1987)
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Concentrated suspension flows Stokes suspensions

Inhomogeneous suspensions

Suspensions in pressure-driven flow

@ os 0=03 @ 15 $=030

50300y

I
S TEER

1o 15 %

yla

5 yla

e Migration of particles: contradictory to Stokes theory

e Shear-induced migration by Leighton & Acrivos (1987)
High shear rate: more frequent collisions

Low shear rate: less frequent collisions
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Concentrated suspension flows Stokes suspensions

Inhomogeneous suspensions

Suspensions in pressure-driven flow

@ os 0=03 @ 15 $=030

50300y

I
S TEER

1o 15 %

yla

° yla
e Migration of particles: contradictory to Stokes theory
e Shear-induced migration by Leighton & Acrivos (1987)
High shear rate: more frequent collisions
b ji~Vy
Low shear rate: less frequent collisions
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Concentrated suspension flows Stokes suspensions

Particle flux model

@ Shear-induced migration is a phenomenological model and unreliable for general use.

@ Stress-induced migration model: based on a phase-averaged momentum conservation

®Morris & Boulay JOR (1999)
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Concentrated suspension flows Stokes suspensions

Particle flux model

@ Shear-induced migration is a phenomenological model and unreliable for general use.

@ Stress-induced migration model: based on a phase-averaged momentum conservation
e Particle-phase momentum conservation:®
V - ({xp0) — (0 - Vx,) =0, x,(x): particle-phase indicator function
Local homogeneity assumption: V - (x,o) ~ V - ©*,
(o -Vxp) =~ —nF", n=¢x3/4nd’®
Hydrodynamic drag model: F? = —6mpa(V — u)/f($), u: mixture velocity

557
Particle flux: j = ¢(V —u) = % (p)V - P =~ 9%y

oy

Stress modeling: Local rheology assumption

P(c(ﬁ)) Meﬂ'E(ﬁg 0 ie. pep(o)
=" = pyA o (0)  Ap(d 0 _H
Yy /“fo IZ) Aap() p(o) :K(%) (1 _ fm)

®Morris & Boulay JOR (1999)

|
/
—
|
N
£l
~—
b
1%
&
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Concentrated si nsion flows Stokes suspensions

Comparison with simulations

Yeo & Maxey JFM (2011)

@ Suspension model overestimates particle migration.
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Concentrated suspension flows

Particle normal stresses

Normal stresses, 35, scaled by the mean pressure gradient 2 and channel height A.

=02
$=03
=04

P
935,

5> = 0 — consistent with the model

DISPERSED MULTIPHASE FLOWS Kyongmin Yeo

Stokes suspensions
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Concentrated suspension flows Stokes suspensions

Particle Shear Stress

(a)
Total Shear Stress:
e (o12) = (Xpo12) + (Xro12)
Y\ D
=(1- 7) .
(1=3)1
b Effective Viscosity:
:z : Krieger & Dougherty y
— — — Eilers /Lﬁ _ <0-12>
po  (xron2)
=1 + <XPU]2>

(1 =y/W)fPh — (xpo12)”

o 0.2 0.3 0.0 05 06

L3

@ Local Rheology assumption is valid.
@ Suspension microstructure changes near the center.

@ Significant non-local effects in the channel center.
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Concentr Stokes suspensions

Time & Length scales of concentrated suspension

e Stokes theory: fixed timescale () & lengthscale (a)
e Concentrated suspensions:
Formation of hydro-cluster introduces time & lengthscales

Melrose & Ball (2004)
o Hysteresis e Lengthscales
10 -
= H=10 !
A H =20 h
8 v caLh h
. C4Lc 1
* C4H
- o : ;"& D (1959)
= | Eilers ‘
4
2
0.2 0.4
o
Narumi et al. JOR (2002) Yeo & Maxey JFM (2010), Europhys. Lett. (2010)
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Concentrated suspension flows Finite Re), suspensions

Suspensions in uniform shear flow: Re, > 0

@ Stokes suspensions: theoretical study, relevant to microfluidic devices, CHE products

@ Mechanical/Natural flow systems of interest: 0 < Re,

= What is the effect of finite inertia on dynamics of concentrated suspensions?

e Particle-pair interaction revisited.
Stokes flows Re, =1

@ Re, > 0 introduces irreversibility to flow, beyond that due to contact forces

@ At Re, > 0, particle-pair interaction is sufficient to generate diffusive motion
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Concentrated suspension flows Finite Re), suspensions

Effective viscosity

Effective shear viscosity Particle shear stress v.s. Re,

@ Finite-Re, suspension is shear-thickening. — stronger shear, higher viscosity
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Concentr Finite Re), suspensions

Velocity fluctuations and PDFs ’

$=02

¢ = 0.4

v L 4]
« VS Rep Vi=22

@ Kinetic Energy of the particle phase decreases at higher Re,
@ Flatness increases slightly with Re,
"Yeo & Maxey POF in review
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“oncentrated suspension flows Finite Re), suspensions

Cross-flow diffusion

Diffusivity (Di = V'; [ p()d7)

.QS:O.Z,AH:()AS,.()ZS:OA.

@ Diffusivity is an increasing function of Rep, while the velocity fluctuation decreases at higher Rep.
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Concentrated suspension flows Finite Re), suspensions

Cross-flow diffusion

Diffusivity (Di = V'; [ p(7)dr) Mean-square displacement

.¢):0.2,Au:()‘3,.¢:0.4 ¢:02

@ Diffusivity is an increasing function of Rep, while the velocity fluctuation decreases at higher Rep.

@ At higher Re,, the reduced intermediate region results in the increase in D;;.
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Concentrated suspension flows Finite Re), suspensions

Lagrangian auto-correlation

@ Decreased negative loop — longer correlation — larger 7; — increase in Dj;

@ Longer-time tail (7 > 3-y¢) collapes onto one curve.
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Concentrated suspension flows Finite Re), suspensions

Pair-distribution function in the plane of shear: g(r, 6, 0)

Principal Axis

@ Earlier detachment reduces the negative correlation.
@ Increase inertia — increase in the wake region
@ Far-field PDF is less sensitive to inertia.
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Concentrated suspension flows Finite Re), suspensions

Near-contact pair distribution function

Near contact PDF PDF weighted by Si»
=02
$=03
=04

@ Detachment point moves towards upstream

@ Increased contributions from the compressible pricipal axis events (6 /7 = 0.75)
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Concentrated suspension flows

Intermittency of particle shear stress

S12 = hydrodynamic + potential force

=Sh— 1> reF"

e Exponential decay at low Re,
e Algebraic decay at higher Re,

DISPERSED MULTIPHASE FLOWS Kyongmin Yeo

Finite Re), suspensions
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Conclusions

Summary

@ Dispersed multiphase flow is a good example of . For
a better understanding we need to gather information scattered across
disciplines from microhydrodynamics to turbulent flows.

@ Phase-coupling in stress tensor has a significant effect on turbulence
modulation. For a better estimate of the stress coupling, not only stress
re-distribution around an isolated particle, but also particle-pair
dynamics needs to be accurately resolved.

@ To develop a self-consistent multiscale model, there is a need to
incorporate well established results of dense suspensions in CHE into the
study of multiphase flow in the boundary layer.

@ Dense finite-inertia suspension flow is a grey area, which is not well
understood.
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