Dispersed multiphase flows: From Stokes suspensions to turbulence

Kyongmin Yeo

EARTH SCIENCES DIVISION

August 14, 2012

Thanks to: Martin R. Maxey (Brown University)

Dispersed multiphase flows

Range of scales

• Reynolds number: ratio of viscous timescale to inertial timescale

$$Re_b = \frac{\rho \mathcal{UL}}{\mu}$$

• Cloud:
$$Re_b \sim O(10^5) - O(10^6)$$

- Human respiratory system: $Re_b \sim O(10^{-1}) O(10^3)$
- Blood flow: $Re_b \sim O(10^{-3}) O(10^2)$
- Microfluidic devices: $Re_b \sim O(10^{-3}) O(1)$

Range of scales

• Reynolds number: ratio of viscous timescale to inertial timescale

$$Re_{b} = \frac{\rho \mathcal{U} \mathcal{L}}{\mu} \qquad \qquad Re_{p} = \frac{\rho a^{2} \mathcal{L}}{\mu}$$

Cloud:

 $a\sim O(1)-O(10^2)\mu m,$

- Human respiratory system: $a \le O(10)\mu m$,
- Blood flow:
 - $a \sim O(1) \mu m$,
- Microfluidic devices: $a \sim O(1) \mu m$,

$$\begin{aligned} Re_p &\sim O(10^{-1}) - O(10).\\ Re_b &\sim O(10^{-1}) - O(10^3)\\ Re_p &\sim O(10^{-2}) - O(1).\\ Re_b &\sim O(10^{-3}) - O(10^2)\\ Re_p &\sim O(10^{-4}) - O(1).\\ Re_b &\sim O(10^{-3}) - O(1)\\ Re_p &\sim O(10^{-4}) - O(10^{-1}). \end{aligned}$$

 $Re_b \sim O(10^5) - O(10^6)$

- Stokes layer thickness: $l_{St} \sim 1/Re_p$
 - \Rightarrow Particle-scale dynamics in Stokes regime,

while bulk flow can be Stokes to Turbulent flow.

Examples of phase changes in dispersed flows

Figure 4. The Lighthill "sandwich model" of a tropical hurricane

Barenblatt (2009)

- Solid boundary
- Boundary layer of concentrated suspensions
- Dilute turbulent dispersed flows

• Sediment transport

Forces 1: Sketth of a payticle sed committed to (c) a Househole or (d) a Couelle flow or a reconfirmmental pharmal

Ouriemi et al. (2009)

Outline

- Dilute to semi-dilute suspension flows
 - Finite-size effect
 - Particle-pair hydrodynamics
- 3 Concentrated suspension flows
 - Stokes suspensions
 - Finite Re_p suspensions

Conclusions

Review of Lagrangian point-particle model¹

• Equation of motion for a spherical particle in unsteady flow (Maxey & Riley 1983):

$$m_p \frac{d\mathbf{V}}{dt} = (m_p - m_f)\mathbf{g} + m_f \frac{D\mathbf{u}}{Dt} - \frac{m_f}{2} \frac{d}{dt} \left\{ \mathbf{V} - \mathbf{u} - \frac{1}{10} a^2 \nabla^2 \mathbf{u} \right\}$$
$$- 6\pi a \mu \left\{ \mathbf{Q} + a \int_0^t \frac{d\mathbf{Q}}{d\tau} [\pi \nu (t - \tau)]^{-1/2} d\tau \right\}$$
$$\mathbf{Q} = \mathbf{V} - \left(1 + \frac{1}{6} a^2 \nabla^2 \right) \mathbf{u}$$

¹Balachandar & Eaton ARFM (2010)

Review of Lagrangian point-particle model¹

• Equation of motion for a spherical particle in unsteady flow (Maxey & Riley 1983):

$$m_p \frac{dV}{dt} = (m_p - m_f)g - 6\pi a\mu(V - u) = F$$

• Phase-coupling through drag force **F**;

$$\rho_f \left\{ \frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u} \cdot \boldsymbol{\nabla}) \boldsymbol{u} \right\} = \boldsymbol{\nabla} \cdot \boldsymbol{\sigma} - \boldsymbol{F}, \quad \sigma_{ij} = -p \delta_{ij} + 2\mu_f e_{ij}$$

- \Rightarrow Understimates turbulent attenuation, particularly for $a \ge \eta$.
- \Rightarrow Unresolved local distortion of flow field around the particles.

¹Balachandar & Eaton ARFM (2010)

Review of Lagrangian point-particle model¹

• Equation of motion for a spherical particle in unsteady flow (Maxey & Riley 1983):

$$m_p \frac{dV}{dt} = (m_p - m_f)g - 6\pi a\mu(V - u) = F$$

• Phase-coupling through drag force **F**;

$$\rho_f\left\{\frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u}\cdot\boldsymbol{\nabla})\boldsymbol{u}\right\} = \boldsymbol{\nabla}\cdot\boldsymbol{\sigma}-\boldsymbol{F}, \quad \sigma_{ij} = -p\delta_{ij} + 2\mu_f e_{ij}$$

⇒ Understimates turbulent attenuation, particularly for $a \ge \eta$. ⇒ Unresolved local distortion of flow field around the particles.

• Bulk deviatoric stress in a suspension of force-free particles (Batchelor 1970)

$$\Sigma_{ij} = 2\mu \langle E_{ij} \rangle - \frac{1}{V} \rho_f \int u'_i u'_j dV + \frac{1}{V} \sum_i \int_{\partial \Omega_i} -\mu(u_i n_j + u_j n_i) dA$$

e.g. In the dilute limit: $\int_{\partial \Omega_i} -\mu(u_i n_j + u_j n_i) dA = \frac{20}{3} \pi \mu a^3 e_{ij} \Rightarrow \frac{1}{V} \sum \cdots = \frac{5}{2} \phi \mu e_{ij}$

 \rightarrow Phase-coupling in stress tensor.

¹Balachandar & Eaton ARFM (2010)

Force-coupling method²

• Based on truncated regularized multipole expansion

$$\rho_f\left(\frac{\partial u_i}{\partial t}+u_j\frac{\partial u_i}{\partial x_j}\right)=\frac{\partial\sigma_{ij}}{\partial x_j}+\sum_n\left[F_i\Delta_M(\boldsymbol{r})+\{T_{ij}+S_{ij}\}\frac{\partial}{\partial x_j}\Delta_D(\boldsymbol{r})\right]^n,$$

r = x - Y

- F: gravitational acceleration + inertia force $\rightarrow F = F^{ext} + (m_F m_p) \frac{dV}{dt}$
- $T_{ij} = \frac{1}{2} \epsilon_{ijk} T_k$: body torque + inerital torque $\rightarrow T = T^{ext} + (I_F I_p) \frac{d\Omega}{dt}$
- $\rightarrow \int e_{ii} \Delta_D d\mathbf{x} = 0$ • S_{ii} : surface traction
- Particle motion:

$$V = \int u(x) \Delta_M(r) d^3 x, \qquad \Omega = \frac{1}{2} \int \omega(x) \Delta_D(r) d^3 x.$$

²Lomholt & Maxey JCP (2002)

Force-coupling method²

• Based on truncated regularized multipole expansion

$$\rho_f\left(\frac{\partial u_i}{\partial t}+u_j\frac{\partial u_i}{\partial x_j}\right)=\frac{\partial\sigma_{ij}}{\partial x_j}+\sum_n\left[F_i\Delta_M(\boldsymbol{r})+\{T_{ij}+S_{ij}\}\frac{\partial}{\partial x_j}\Delta_D(\boldsymbol{r})\right]^n,$$

r = x - Y.

- **F**: gravitational acceleration + inertia force \rightarrow **F** = **F**^{ext} + (m_F m_p) $\frac{dV}{dt}$
- $T_{ij} = \frac{1}{2} \epsilon_{ijk} T_k$: body torque + inerital torque $\rightarrow T = T^{ext} + (I_F I_p) \frac{d\Omega}{dt}$
- S_{ij} : surface traction $\rightarrow \int e_{ij} \Delta_D d\mathbf{x} = 0$
- Particle motion:

$$V = \int \boldsymbol{u}(x) \Delta_M(\boldsymbol{r}) d^3 \boldsymbol{x}, \qquad \boldsymbol{\Omega} = \frac{1}{2} \int \boldsymbol{\omega}(x) \Delta_D(\boldsymbol{r}) d^3 \boldsymbol{x}.$$

• Mixture stress: $\sigma_{ij}^{m} = \sigma_{ij} + \sum S_{ij}\Delta_D$ \rightarrow Mean shear stress in a homogeneous flow $\tau_{ij} = -\rho_f \langle u'_i u'_j \rangle + 2\mu_f \langle e_{ij} \rangle + \phi \langle S_{ij} \rangle = -\rho_f \langle u'_i u'_j \rangle + 2\mu_{eff} \langle e_{ij} \rangle \quad (\because \langle S_{ij} \rangle \sim \langle e_{ij} \rangle)$ c.f. Stokes-Einstein estimate: $\mu_{eff} = \mu(1 + 2.5\phi)$

²Lomholt & Maxey *JCP* (2002)

Dissipation spectra in isotropic turbulence

• Direct numerical simulation of forced isotropic turbulence³

	ϕ	Re_{λ}	u'	ϵ	a/η	a/λ	St_l	St_K
N1	0.06	57.3	19.44	5436	5.50	0.37	0.68	10.1
N2	0.06	58.7	19.77	5574	3.84	0.26	0.33	5.0
			*	$St_l = \tau_p$	$/(u'^2/\epsilon)$	$St_K =$	$\tau_p/\tau_K,$	$k_d = \pi/c$

- Spectral redistribution of dissipation rate
- Significant suspension viscosity effect
- ³Yeo *et al. IJMF* (2010)

DISPERSED MULTIPHASE FLOWS

Kyongmin Yeo

LAWRENCE BERKELEY NATIONAL LAB

Spectral energy transfer by particle phase

• Energy budget

$$0 = E_{in}(k) + T(k) - D(k) + H(k)$$

 \rightarrow Dipole energy transfer function: $H(k) = \mathcal{F}\left\{\sum e_{ij}S_{ij}\Delta_D\right\}$

Finite-size effect

Spectral energy transfer by particle phase

• Energy budget

 $0 = E_{in}(k) + T(k) - \underline{D}(k) + H(k) = E_{in}(k) + T(k) - \frac{\widetilde{D}(k)}{D}(k) + \widetilde{H}(k)$

 \rightarrow Dipole energy transfer function: $H(k) = \mathcal{F}\left\{\sum e_{ij}S_{ij}\Delta_D\right\} = -2\mu_{add}k^2E(k) + \widetilde{H}(k)$

 \rightarrow Modified dissipation-rate spectra: $\widetilde{D}(k) = 2(\mu + \mu_{add})k^2 E(k) = 2\mu_{eff}k^2 E(k)$

* Blue line $\rightarrow -2\mu_{add}k^2E(k)$, $\widetilde{H}(k) = H(k) - [-2\mu_{add}k^2E(k)]$

- $\mu_{eff} = \mu(1 + 2.5\phi)$ for larger particle, $\mu_{eff} = \mu(1 + 1.75\phi)$ for smaller particle.
- Turbulence enhancement at smaller scales
- Dipole energy transfer has a long-range effect

Kinetic Energy spectra in isotropic turbulence

• Turbulence enhance at small scales

Preferential concentration of inertial particles

• Low inertia approximation: $0 < St \ll 1$ (Maxey 1987a,b)

$$St \frac{d\mathbf{V}}{dt} = (\mathbf{u}(\mathbf{Y}, t) - \mathbf{V}) + \mathbf{W}$$
$$\mathbf{V}(t) = \mathbf{v}(\mathbf{Y}, t) = (\mathbf{u}(\mathbf{Y}, t) + \mathbf{W}) - St \left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} + \mathbf{W}) \cdot \nabla \mathbf{u}\right)$$
$$\nabla \cdot \mathbf{v} = -\frac{1}{4}St \left(\mathbf{e} : \mathbf{e} - \boldsymbol{\omega} : \boldsymbol{\omega}\right)$$

 \rightarrow Effective particle velocity field $\mathbf{v}(\mathbf{x}, t)$ is compressible. Convergence where $|\mathbf{e}|^2 > |\boldsymbol{\omega}|^2$

Wang & Maxey (1993)

Salazar et al. (2008)

 \Rightarrow Need to consider particle-pair hydrodynamic interactions.

Particle-pair interaction

- For a gap $a\epsilon < l_{St} \sim a/Re_p$:
 - \rightarrow Viscous time scale \ll Inertial time scale
 - \rightarrow Quasi-Stokes problem
 - \cdot Rapid damping of inertial acceleration
 - \cdot Coupling between particle motions
- Fundamental modes of Stokes flow
 - · Particle moving relative to flow $u^D(\mathbf{r}) \sim \frac{a}{r} V$
 - Particle in a shear flow $u^D(\mathbf{r}) \sim \frac{a^3}{r^2} |\mathbf{e}^{\infty}|$

Particle-pair interaction

- For a gap $a\epsilon < l_{St} \sim a/Re_p$:
 - \rightarrow Viscous time scale \ll Inertial time scale
 - \rightarrow Quasi-Stokes problem
 - \cdot Rapid damping of inertial acceleration
 - \cdot Coupling between particle motions
- Fundamental modes of Stokes flow
 - · Particle moving relative to flow $u^{D}(\mathbf{r}) \sim \frac{a}{r}V$
 - Particle in a shear flow $u^D(\mathbf{r}) \sim \frac{a^3}{r^2} |\mathbf{e}^{\infty}|$

• hydbrid method: Ayala et al. (2007)

Particle-pair interaction

- For a gap $a\epsilon < l_{St} \sim a/Re_p$:
 - \rightarrow Viscous time scale \ll Inertial time scale
 - \rightarrow Quasi-Stokes problem
 - \cdot Rapid damping of inertial acceleration
 - \cdot Coupling between particle motions
- Fundamental modes of Stokes flow
 - · Particle moving relative to flow $u^{D}(\mathbf{r}) \sim \frac{a}{r}V$
 - Particle in a shear flow $u^D(\mathbf{r}) \sim \frac{a^3}{r^2} |\mathbf{e}^{\infty}|$
 - · Particle Stress

 $S = S^{\infty} + S_{10} + S_{010} + \cdots$

• hydbrid method: Ayala et al. (2007)

Near-field interaction

• Near-field hydrodynamic interaction

- \rightarrow Particle Stress: $S_{ij} \sim \frac{1}{\epsilon}$
- Non-hydrodynamic short-range interaction
 - Particle roughness element
 - Polymer coating
 - Electrostatic repulsion

Smart & Leighton (1988)

Effects of non-hydrodynamic interaction

• Potential force model: $F^P = -f(\epsilon)d$ (e.g. Lennard-Jones potential, electrostatic repulsion)

Abbas et al. (2006)

Particle Stress

- Equal & opposite repulsive force
 → dipole force in the far-field
- Mean shear stress in a homogeneous flow $\tau_{ij} = -\rho_f \langle u'_i u'_j \rangle + 2\mu_f \langle e_{ij} \rangle + \phi \langle S_{ij} \rangle - n \langle \mathbf{R} \otimes \mathbf{F}^P \rangle$
- Particles in a close proximity: $S_{ij} \sim (1/\epsilon) \mu e_{ij}, \quad -\mathbf{R} \otimes \mathbf{F}^P \gg 2\mu e_{ij}$
- A particle doublet generates far-field dipolar flow \rightarrow additional stress.
- Dissipation rate can be largely affected by RDF.

DISPERSED MULTIPHASE FLOWS

Kyongmin Yeo

LAWRENCE BERKELEY NATIONAL LAB

Comments so far

- Due to the separation of lengthscales, Stokesian dynamics may play a role in modeling dispersed multiphase flow
- Particle stress, or suspension viscosity, has a significant effect in turbulence modulation for *a* > η
- Particle stresslet as well as potential force dipole have a long-range effect and may interact with flow at a scale larger than the particle size.
- For a better prediction, a dispersed model needs to consider stress coupling between fluid and particle phases.

Background: Concentrated suspensions

- Concentrated Suspensions;
 - average separation distance is smaller than the particle size⁴ ($\phi > 0.2$)
 - \rightarrow Nature: B'layers of density currents/ocean spray, Debris flow, Landslide
 - \rightarrow Engineering: Micro-bubble/emulsion DR, CHE products, medical diagnostic device

- multiscale physics: Long-range multi-body $\sim O(10)a$ Lubrication interactions $\sim O(10^{-3})a$
 - \Rightarrow No general theory
 - \Rightarrow Challenging both in experiments and numerical simulations
- Non-Newtonian Rheology

⁴Stickel & Powell ARFM 2005

Lubrication-Corrected FCM⁵

- Multiscale computation of hydodynamic interaction
 - Far-field multibody interaction: Standard FCM
 - Near-field interaction:
 - \Rightarrow Pairwise-additivity of Lubrication interaction (Brady & Bossis 1988)
 - Resistance relation for a particle pair

$$\begin{bmatrix} \mathbf{F}^{1} \\ \mathbf{F}^{2} \\ \mathbf{T}^{1} \\ \mathbf{T}^{2} \end{bmatrix} = \mu \begin{bmatrix} \mathbf{A}^{11} & \mathbf{A}^{12} & \mathbf{B}^{11} & -\mathbf{B}^{12} & \mathbf{G}^{11} & -\mathbf{G}^{12} \\ \mathbf{A}^{12} & \mathbf{A}^{11} & \mathbf{B}^{12} & -\mathbf{B}^{11} & \mathbf{G}^{12} & -\mathbf{G}^{11} \\ (\mathbf{B}^{11})^{T} & (\mathbf{B}^{12})^{T} & \mathbf{C}^{11} & \mathbf{C}^{12} & \mathbf{H}^{11} & \mathbf{H}^{12} \\ -(\mathbf{B}^{12})^{T} & -(\mathbf{B}^{11})^{T} & \mathbf{C}^{12} & \mathbf{C}^{11} & \mathbf{H}^{12} & \mathbf{H}^{11} \end{bmatrix} \begin{bmatrix} \mathbf{V}^{1} - \mathbf{V}^{\infty}(\mathbf{Y}^{1}) \\ \mathbf{V}^{2} - \mathbf{V}^{\infty}(\mathbf{Y}^{2}) \\ \mathbf{\Omega}^{1} - \mathbf{\Omega}^{\infty}(\mathbf{Y}^{1}) \\ \mathbf{\Omega}^{2} - \mathbf{\Omega}^{\infty}(\mathbf{Y}^{2}) \\ -\mathbf{E}^{\infty} \\ -\mathbf{E}^{\infty} \end{bmatrix}$$

• $\mathbf{R} = \mathbf{R}^{Exact} - \mathbf{R}^{FCM}$: $|\mathbf{R}| \to 0$ for the gap between particle $\epsilon > 0.6$.

- A coupled system of far-field and near-field interactions is solved by using a PCG.
- Almost the same computational cost with the standard FCM, $\rightarrow O(N_p \log N_p)$ using a Fourier spectral method.

⁵Yeo & Maxey *JCP* (2010)

Characteristics of Concentrated Suspensions

• High-frequency viscosity

 \rightarrow Monte Carlo procedure: Ensemble average of 1000 random configuration

Characteristics of Concentrated Suspensions

- Stokes-flow theory:
 - Instantaneity
 - Reversible
 - Newtonian rheology

Characteristics of Concentrated Suspensions

- Stokes-flow theory:
 - Instantaneity
 - Reversible
 - Newtonian rheology

- Experimental Observation:
 - History effect
 - Irreversibility & Chaos
 - Non-Newtonian rheology

• Irreversible transition

• Particle migration

Yeo & Maxey PRE (2010ab)

Yeo & Maxey *JFM* (2011)

Non-hydrodynamic effects

• Non-hydrodynamic interaction breaks fore-after symmetry!

Sierou & Brady (2002)

Sierou & Brady (2004)

Zarraga et al. (2002)

DISPERSED MULTIPHASE FLOWS

LAWRENCE BERKELEY NATIONAL LAB

Inhomogeneous suspensions

Suspensions in pressure-driven flow

- Migration of particles: contradictory to Stokes theory
- Shear-induced migration by Leighton & Acrivos (1987)

Inhomogeneous suspensions

Suspensions in pressure-driven flow

- Migration of particles: contradictory to Stokes theory
- Shear-induced migration by Leighton & Acrivos (1987) High shear rate: more frequent collisions

Low shear rate: less frequent collisions

Inhomogeneous suspensions

Suspensions in pressure-driven flow

- Migration of particles: contradictory to Stokes theory
- Shear-induced migration by Leighton & Acrivos (1987) High shear rate: more frequent collisions

$$\Downarrow j_{\perp} \sim
abla \dot{oldsymbol{\gamma}}$$

Low shear rate: less frequent collisions

Particle flux model

- Shear-induced migration is a phenomenological model and unreliable for general use.
- Stress-induced migration model: based on a phase-averaged momentum conservation

⁶Morris & Boulay *JOR* (1999)

Particle flux model

- Shear-induced migration is a phenomenological model and unreliable for general use.
- Stress-induced migration model: based on a phase-averaged momentum conservation
- Particle-phase momentum conservation:⁶

 $\nabla \cdot \langle \chi_p \sigma \rangle - \langle \sigma \cdot \nabla \chi_p \rangle = 0, \quad \chi_p(\mathbf{x}):$ particle-phase indicator function

Local homogeneity assumption: $\nabla \cdot \langle \chi_p \sigma \rangle \simeq \nabla \cdot \Sigma^p$,

$$\langle \boldsymbol{\sigma} \cdot \boldsymbol{\nabla} \chi_p \rangle \simeq -n \boldsymbol{F}^H, \quad n = \phi \times 3/4\pi a^3$$

Hydrodynamic drag model: $F^{H} = -6\pi\mu a (V - u)/f(\phi)$, u: mixture velocity

Particle flux: $\mathbf{j} = \phi(\mathbf{V} - \mathbf{u}) = \frac{2a^2}{9\mu} f(\phi) \nabla \cdot \Sigma^P \Rightarrow \mathbf{j}_{\perp} \sim \frac{\partial \Sigma_{22}^P}{\partial y}$

Stress modeling: Local rheology assumption

$$\boldsymbol{\Sigma}^{P} = \mu_{f} \dot{\gamma} \begin{bmatrix} p(\phi) & \mu_{eff}(\phi) & 0\\ \mu_{eff}(\phi) & \lambda_{1} p(\phi) & 0\\ 0 & 0 & \lambda_{2} p(\phi) \end{bmatrix} \quad \text{i.e.} \quad \mu_{eff}(\phi) = \left(1 - \frac{\phi}{\phi_{m}}\right)^{-2.5\phi_{m}} p(\phi) = K \left(\frac{\phi}{\phi_{m}}\right)^{2} \left(1 - \frac{\phi}{\phi_{m}}\right)^{-2}$$

⁶Morris & Boulay *JOR* (1999)

Stokes suspensions

Comparison with simulations

FIGURE 4. The local volume fraction profiles for (a) $\Phi = 0.3$ and (b) $\Phi = 0.4$; •, P3L and P4L; profile of P3L.

Yeo & Maxey JFM (2011)

Suspension model overestimates particle migration. ۲

Particle normal stresses

Normal stresses, Σ_{ii}^{P} , scaled by the mean pressure gradient f^{D} and channel height *h*.

• $\frac{\partial \Sigma_{22}^{P}}{\partial y} \simeq 0 \rightarrow \text{consistent with the model}$

Particle Shear Stress

Total Shear Stress:

$$egin{aligned} &\langle \sigma_{12}
angle &= \langle \chi_p \sigma_{12}
angle + \langle \chi_f \sigma_{12}
angle \ &= \Big(1 - rac{y}{h} \Big) f^D h. \end{aligned}$$

Effective Viscosity:

$$\begin{aligned} \frac{\mu_{eff}}{\mu_0} &= \frac{\langle \sigma_{12} \rangle}{\langle \chi_f \sigma_{12} \rangle} \\ &= 1 + \frac{\langle \chi_p \sigma_{12} \rangle}{(1 - y/h) f^D h - \langle \chi_p \sigma_{12} \rangle}. \end{aligned}$$

- Local Rheology assumption is valid.
- Suspension microstructure changes near the center.
- Significant non-local effects in the channel center.

Time & Length scales of concentrated suspension

Melrose & Ball (2004)

- Stokes theory: fixed timescale $(\dot{\gamma})$ & lengthscale (a)
- Concentrated suspensions: Formation of hydro-cluster introduces time & lengthscales

Narumi et al. JOR (2002)

Yeo & Maxey JFM (2010), Europhys. Lett. (2010)

Suspensions in uniform shear flow: $Re_p > 0$

- Stokes suspensions: theoretical study, relevant to microfluidic devices, CHE products
- Mechanical/Natural flow systems of interest: $0 < Re_p$
- \Rightarrow What is the effect of finite inertia on dynamics of concentrated suspensions?
- Particle-pair interaction revisited.

• $Re_p > 0$ introduces irreversibility to flow, beyond that due to contact forces

• At $Re_p > 0$, particle-pair interaction is sufficient to generate diffusive motion

Effective viscosity

• Finite- Re_p suspension is shear-thickening. \rightarrow stronger shear, higher viscosity

LAWRENCE BERKELEY NATIONAL LAB

Velocity fluctuations and PDFs 7

- Kinetic Energy of the particle phase decreases at higher Re_p
- Flatness increases slightly with Re_p

⁷Yeo & Maxey *POF* in review

DISPERSED MULTIPHASE FLOWS

Cross-flow diffusion

• Diffusivity is an increasing function of Re_p , while the velocity fluctuation decreases at higher Re_p .

Cross-flow diffusion

• Diffusivity is an increasing function of Re_p , while the velocity fluctuation decreases at higher Re_p .

• At higher Re_p , the reduced intermediate region results in the increase in D_{ii} .

Lagrangian auto-correlation

- Decreased negative loop \rightarrow longer correlation \rightarrow larger $T_L \rightarrow$ increase in D_{ii}
- Longer-time tail ($\tau > 3\dot{\gamma}t$) collapes onto one curve.

Pair-distribution function in the plane of shear: $g(r, \theta, 0)$

- Earlier detachment reduces the negative correlation.
- Increase inertia \rightarrow increase in the wake region
- Far-field PDF is less sensitive to inertia.

Near-contact pair distribution function

- Detachment point moves towards upstream
- Increased contributions from the compressible pricipal axis events ($\theta/\pi = 0.75$)

Intermittency of particle shear stress

 S_{12} = hydrodynamic + potential force = $S_{12}^{H} - \frac{1}{2} \sum \boldsymbol{r} \otimes \boldsymbol{F}^{P}$

$$S_{12}^* = rac{S_{12} - \langle S_{12}
angle}{\sigma_S}$$

- Exponential decay at low Re_p
- Algebraic decay at higher Rep

Re = 0.005, 0.5, 1.0, 2.0

Summary

- Dispersed multiphase flow is a good example of multiscale physics. For a better understanding we need to gather information scattered across disciplines from microhydrodynamics to turbulent flows.
- Phase-coupling in stress tensor has a significant effect on turbulence modulation. For a better estimate of the stress coupling, not only stress re-distribution around an isolated particle, but also particle-pair dynamics needs to be accurately resolved.
- To develop a self-consistent multiscale model, there is a need to incorporate well established results of dense suspensions in CHE into the study of multiphase flow in the boundary layer.
- Dense finite-inertia suspension flow is a grey area, which is not well understood.