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Overview
We develop a regional geostatistical model to study
teleconnections—a climate phenomenon in which
geographically distant areas influence regional climate
patterns—at decadal time scales. Such a model could
ultimately help regional planners use climate forecasts to
study and prepare for local impacts of climate variability
and change.

Teleconnections occur when remote covariates, like Pacific Ocean sea surface temperature
anomalies, influence regional climate variables, like average Winter precipitation anomalies.

Regional teleconnections
Data: (1981-2013) Average winter (DJF) land and sea surface temperature anomalies from
ERA-Interim Reanalysis data; PRISM precipitation anomalies (total rain and melted snow).

Pointwise correlation maps offer one way to study teleconnection effects. These maps highlight how
teleconnection effects vary regionally. Teleconnection models should account for this behavior.

Spatial statistics
Spatial models extend linear regression techniques so we
can use statistical models to estimate and test empirical
relationships while accounting for spatial correlations in
data. While CCA and EOF analyses estimate spatial
patterns in data, they do not provide the same modeling
flexibility and ability to test relationships as spatial
models.

PPT anomalies display positive spatial correlations—a phenomena in which a variable’s value at any
location tends to be similar to its neighbors.

The semivariogram, γ(d), quantifies spatial correlation by measuring a variable’s variance as a
function of distance, thereby quantifying how similar nearby locations tend to be. Our model uses the
Matèrn correlation function with ν = 2—a smoothly decaying spatial correlation function—to model

this correlation in red.

γ(d) = Var (Y (s1)− Y (s2)) for ‖s1 − s2‖ = d

New spatial teleconnection modeling approach
We model teleconnection at each mainland location, s, and time, t, with a simple, flexible form

y(s, t)︸ ︷︷ ︸
PPT anomaly

=

p∑
i=0

βixi(s, t)︸ ︷︷ ︸
Local effects

+

nr∑
r=1

α(r, s)z(r, t)︸ ︷︷ ︸
Teleconnection effects

+ w(s, t)︸ ︷︷ ︸
Random error

Data

Mainland: s — location
y(s, t) — PPT anomaly
x1(s, t) — temp. anomaly
x2(s, t) — longitude

Ocean: r — location
z(r, t) — SST anomaly

Effects

Mainland: βi — regression coefficients;
non-linear effects could be modeled
with splines

Ocean: α(r, s) — teleconnection effect of ocean location,
r, on mainland location, s

This model naturally induces a hierarchical Bayesian structure across timepoints, t

Y t ∼ N
{
Xtβ +

(
Ins ⊗ zTt

)
α̃, Σ

}
α̃ ∼ N {0nsnr×1, Σ⊗R}
β ∼ N {0p×1, Λ}
σ2 ∼ Inv-Gamma(k, θ)

ρ ∼ Uniform(a, b)

Σ = σ2
y

(
Σ(ρy) + σ2

εIns
)

R = σ2
rR(ρr)

zt =
[
z(1, t) . . . z(r, t)

]T
α̃ =

[
α(s1)T . . .α(sns)

T
]T

α(s) =
[
α(r1, s) . . . α(rnr , s)

]T
Key implications:

1. This model enables inference about teleconnection effects (e.g., SST anomalies) while accounting
for effects of local predictors (e.g., mainland temperature anomalies and location).

2. Modeled teleconnection effects, α̃, can capture large-scale correlations teleconnection predictors
(e.g., SST anomalies).

3. Modeled teleconnection effects, α̃, vary smoothly across the mainland.

Estimation
• Estimate parameters with hybrid Gibbs algorithm

applied to the model marginalized over spatial effects.

– Conjugate updates computed for:
• β, σ2

y

– Random walk updates computed for:
• log(σ2

r), log(σ2
ε), logit(ρy), logit(ρr)

• Estimate teleconnection coefficients, α̃, using posterior
parameter samples to draw (in parallel) composition
samples of α̃.

• Marginal likelihood complexity:

– Likelihood evaluation in O(n3
s ∨ n3

r) by
applying Kronecker product properties and
Sherman-Morrison-Woodbury formula.

Marginal model:
(
let Z =

[
zt1 . . . ztnt

])
Y =

 Y t1
...

Y tnt

 ∼ N


Xt1

. . .
Xtnt


β...
β

 , (Int + ZTRZ
)
⊗ Σ



Composition-sample distribution:

α̃|Y , · ∼ N

(∑
t

(
(Y t −Xtβ)⊗

(
R−1 + ZZT

)−1
zt

)
, Σ⊗

(
R−1 + ZZT

)−1

)

Results
• Teleconnection effect estimates reproduce trends in observed pointwise correlation patterns

• Bayesian highest posterior density (HPD) intervals—a Bayesian version of confidence intervals—let us
identify regions where non-spurious, scientifically meaningful teleconnection effects may exist

◦ Following discussion in Towler, et. al. (2016), we search for novel ocean regions with significant
teleconnections to the mainland region studied. For New Mexico, we found no regions with possible
teleconnection. For Arkansas, we found a region off of California with a possible teleconnection (below
right, highlighted in bold; significant based on a 70% HPD interval).

• PPT anomaly forecasts (below center) match observed patterns (below left) in La Niña years, but not in
El Niño years. This discrepancy is likely an artifact of excluding the ENSO region from our analysis.

◦ We compared the teleconnection model forecasts to a model that only includes the local predictor.
The teleconnection model’s root mean-squared prediction error (RMSPE) is 7% lower than the local
forecast in the 1998 La Niña year. Posterior predictive loss is 10% lower.

◦ The teleconnection model’s RMSPE is generally high (La Niña RMSPE = 21 mm) since spatial models
can greatly oversmooth predictions, thereby reducing prediction magnitudes.

Parameter estimates

Posterior mean 90% HPD Interval

β0 -3.54 (-35.2, 29.5)
β1 -1.35 (-2.67, -0.00315)
β2 -0.0294 (-0.353, 0.302)
σ2
y 363 (319, 409)
σ2
r 0.015 (0.0118, 0.0158)
ρy 82.1 (76.7, 86.8)
ρr 23.1 (7.74, 36.9)
σ2
ε 0.0862 (0.057, 0.0742)

• 90% HPD Interval for β1 suggests relationship
of PPT with local temperature is weak. Future
work will explore relationships with other local
variables and their importance relative to remote
variables.

Key contributions

• Geostatistical model that incorporates spatially
disjoint predictors.

• Methodology for adding explanatory structure
and statistical testing to teleconnection patterns.

Future work

• Reformulate model to predict anomaly categories
(i.e., “High”, “Medium”, “Low”) to increase skill.

• Refine initial, exploratory modeling to consider a
larger Pacific region and additional variables to
assess improvements to predictions.

• Investigate effect of spatial scale on predictive
skill.
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