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Motivation

∙ Estimate teleconnections and test for significance while
– accounting for spatial dependence
– accounting for impact of local factors
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Contributions

Climate science

∙ Alternative to compositing by directly controlling for local
covariates

∙ Alternative to post-hoc multiple testing corrections by directly
accounting for spatial dependence

Spatial statistics

∙ Methodology for spatial modeling with remote effects
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Case study: Colorado precipitation

∙ (Reanalysis) Data (33 winters: 1981–2013)
– Y (s, t): PRISM precipitation
– x(s, t): ERA-Interim covariates

∙ Local covariates: TCWV , T , Z700, Elevation
∙ Local domain: 240 42km-resolution grid cells
∙ Remote domain: 5,252 78km-resolution grid cells
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Remote effects spatial process (RESP) model

Y (s, t)⏟  ⏞  
Std. Precip. anomaly

= x(s, t)T 𝛽⏟  ⏞  
Local effects

+ w(s, t) + 𝜀(s, t)⏟  ⏞  
Spatial + Independent error

+
∫︁

𝒟Z

z(r , t)𝛼(s, r)dr⏟  ⏞  
Teleconnection effects
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Remote effects spatial process (RESP) model

∙ Reduced rank approximation
– Aggregate ocean data for more stable results
– Aggregation parameters statistically optimized/estimated
– 𝛼(s, r) =

∑︀k
j=1 h

(︀
r , r*

j
)︀
𝛼

(︀
s, r*

j
)︀
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Remote effects spatial process (RESP) model

∙ Remote effects parameterization: Spatial basis fns.
– Estimate teleconnections for EOFs or other patterns
– z(r , t) =

∑︀K
k=1 ak(t)𝜓k(r)
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Bayesian hierarchical implementation

Y t =

⎡⎢⎣ Y (s1, t)
...

Y (sns , t)

⎤⎥⎦ ∼ 𝒩
(︀
Xt𝛽 +

(︀
Ins ⊗ zT

t
)︀

𝛼̃, Σ
)︀

𝛼̃ ∼ 𝒩 (0, Σ ⊗ R)

𝛽 ∼ 𝒩 (0, Λ)

𝜎2 ∼ Inv-Gamma(k, 𝜃)

𝜌 ∼ Uniform(a, b)

Xt : Matrix of all local covariates for time t

𝛼̃ : Vector of teleconnection effects for all locations

Σ : Covariance matrix for Colorado locations

R : Covariance matrix for teleconnection effects 𝛼(·)

𝜃 =
(︀
𝜎2, 𝜌

)︀
: Covariance matrix scale and range parameters

(Λ, k, 𝜃, a, b) : Hyperparameters 8



Case study: Parameter estimates
∙ Estimates account for remote covariates

Posterior mean 95% HPD VIF

𝛽0 0 (-0.058, 0.059) 1
𝛽TCWV 0.491 (0.424, 0.554) 1.2

𝛽T -0.302 (-0.362, -0.241) 1.1
𝛽Z700 -0.149 (-0.224, -0.078) 1.2
𝛽ELEV 0 (-0.049, 0.046) 1

𝜎2
w 0.322 (0.303, 0.341)
𝜎2

𝛼 0.004 (0.003, 0.005)
𝜎̃2

𝜀 0.093 (0.086, 0.099)
𝜌w 37.11 (35.766, 38.332)
𝜌𝛼 6.657 (1.306, 11.166)
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Case study: Teleconnection estimates

∙ RE model uses spatial dependence to “interpolate”
significance in correlation maps

∙ RESP model suggests positive (red) teleconnection effects are
fully expressed through local covariates
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Case study: Data fit
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Case study: Model comparison

∙ Fit measured with Heidke skill: HS ∝ P
(︁
Ŷ (s, t) = Y (s, t)

)︁
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Conclusions and future work

∙ Conclusions
– A new class of spatial statistics problems in which distant

locations are correlated.
– Geostatistical model that incorporates both local and spatially

remote covariates modeled via different spatial processes.
– A more formal framework than previously available for

studying teleconnection patterns while accounting for local
covariates and spatial dependence.

∙ Possible future work
– GLM version of model to study teleconnection impacts on

annual number of rain events.
– Extension to allow temporal variation to account for changing

teleconnections.
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