A geostatistical model for teleconnections

.

Josh Hewitt 12 May 2017

Joint work with

- Jennifer A. Hoeting
- James Done
- Erin Towler

Motivation

• Estimate teleconnections and test for significance while

- accounting for spatial dependence
- accounting for impact of local factors

Contributions

Climate science

- Alternative to compositing by directly controlling for local covariates
- Alternative to post-hoc multiple testing corrections by directly accounting for spatial dependence

Spatial statistics

• Methodology for spatial modeling with remote effects

Case study: Colorado precipitation

- (Reanalysis) Data (33 winters: 1981–2013)
 - Y(s, t): PRISM precipitation
 - x(s, t): ERA-Interim covariates
- Local covariates: TCWV, T, Z700, Elevation
- Local domain: 240 42km-resolution grid cells
- Remote domain: 5,252 78km-resolution grid cells

Remote effects spatial process (RESP) model

$$\underbrace{Y(s,t)}_{} \qquad = \underbrace{x(s,t)^{\mathsf{T}}\beta}_{} + \underbrace{w(s,t) + \varepsilon(s,t)}_{} + \varepsilon(s,t) +$$

Std. Precip. anomaly Local effects Spatial + Independent error

 $\underline{(s,t)} + \int_{\mathcal{D}_Z} z(\mathbf{r},t) \alpha(s,\mathbf{r}) d\mathbf{r}$

Teleconnection effects

Remote effects spatial process (RESP) model

- Reduced rank approximation
 - Aggregate ocean data for more stable results
 - Aggregation parameters statistically optimized/estimated

$$- \alpha(\boldsymbol{s}, \boldsymbol{r}) = \sum_{j=1}^{k} h(\boldsymbol{r}, \boldsymbol{r}_{j}^{*}) \alpha(\boldsymbol{s}, \boldsymbol{r}_{j}^{*})$$

Remote effects spatial process (RESP) model

- Remote effects parameterization: Spatial basis fns.
 - Estimate teleconnections for EOFs or other patterns
 - $z(\mathbf{r},t) = \sum_{k=1}^{K} a_k(t) \psi_k(\mathbf{r})$

Bayesian hierarchical implementation

$$\mathbf{Y}_{t} = \begin{bmatrix} \mathbf{Y}(\mathbf{s}_{1}, t) \\ \vdots \\ \mathbf{Y}(\mathbf{s}_{n_{s}}, t) \end{bmatrix} \sim \mathcal{N} (X_{t}\beta + (I_{n_{s}} \otimes \mathbf{z}_{t}^{T}) \tilde{\alpha}, \Sigma)$$
$$\tilde{\alpha} \sim \mathcal{N}(\mathbf{0}, \Sigma \otimes R)$$
$$\beta \sim \mathcal{N}(\mathbf{0}, \Lambda)$$
$$\sigma^{2} \sim \text{Inv-Gamma}(k, \theta)$$
$$\rho \sim \text{Uniform}(\mathbf{a}, \mathbf{b})$$

- X_t : Matrix of all local covariates for time t
- $\tilde{\alpha}$: Vector of teleconnection effects for all locations
- Σ : Covariance matrix for Colorado locations
- **R** : Covariance matrix for teleconnection effects $\alpha(\cdot)$
- $\theta = \left(\sigma^2, \ \rho\right): \ {\rm Covariance\ matrix\ scale\ and\ range\ parameters} \\ (\Lambda, k, \theta, a, b): \ {\rm Hyperparameters}$

Case study: Parameter estimates

• Estimates account for remote covariates

	Posterior mean	95% HPD	VIF
β_0	0	(-0.058, 0.059)	1
β_{TCWV}	0.491	(0.424, 0.554)	1.2
β_T	-0.302	(-0.362, -0.241)	1.1
$\beta_{Z_{700}}$	-0.149	(-0.224, -0.078)	1.2
$\beta_{\textit{ELEV}}$	0	(-0.049, 0.046)	1
σ_w^2	0.322	(0.303, 0.341)	
σ_{α}^2	0.004	(0.003, 0.005)	
$ ilde{\sigma}_{arepsilon}^2$	0.093	(0.086, 0.099)	
$ ho_{w}$	37.11	(35.766, 38.332)	
$ ho_{lpha}$	6.657	(1.306, 11.166)	

Case study: Teleconnection estimates

- RE model uses spatial dependence to "interpolate" significance in correlation maps
- RESP model suggests positive (red) teleconnection effects are fully expressed through local covariates

Case study: Data fit

RE model (SST only)

Case study: Model comparison

• Fit measured with Heidke skill: $HS \propto P(\hat{Y}(\boldsymbol{s},t) = Y(\boldsymbol{s},t))$

Conclusions and future work

- Conclusions
 - A new class of spatial statistics problems in which distant locations are correlated.
 - Geostatistical model that incorporates both local and spatially remote covariates modeled via different spatial processes.
 - A more formal framework than previously available for studying teleconnection patterns while accounting for local covariates and spatial dependence.
- Possible future work
 - GLM version of model to study teleconnection impacts on annual number of rain events.
 - Extension to allow temporal variation to account for changing teleconnections.

Acknowledgements

- Conference and workshop travel under NSF research network on STATMOS through grant DMS-1106862.
- This material is based upon work supported by the National Science Foundation under Grant Number (NSF AGS -1419558). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.